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Abstract
Retrieval-augmented generation (RAG) systems have traditionally
relied on text-based pipelines that extract and retrieve information
from documents. While efficient and lightweight, these approaches
often struggle with documents where meaning is conveyed through
layout, tables, and visual elements. Recent advances in multimodal
pipelines, powered by advanced vision-language models (VLMs),
offer significantly improved retrieval quality by jointly encoding vi-
sual and textual signals. However, these gains come with increased
memory requirements and higher indexing and retrieval latency. To
navigate these trade-offs, we propose a quantitative, data-driven se-
lection methodology, guiding practitioners in identifying the most
suitable RAG pipeline for a given document corpus based on em-
pirical performance and resource constraints. We evaluate leading
contemporary textual and multimodal pipelines, including dense
and late-interaction architectures, analyze their strengths and limi-
tations, and examine the types of documents they are equipped to
handle. Our study provides practical guidance on selecting retrieval
architectures that balance retrieval effectiveness with system-level
efficiency, offering clear criteria for when the benefits of sophisti-
cated multimodal systems outweigh their operational costs.

CCS Concepts
• Information systems→ Evaluation of retrieval results;Mul-
timedia and multimodal retrieval; Question answering.

Keywords
Retrieval-Augmented Generation, Multimodal Retrieval
ACM Reference Format:
Emre Kuru and Mehmet Onur Keskin. 2025. Evaluating Modern RAG: Tex-
tual, Multimodal, Dense, and Late Interaction Pipelines. In Information
Retrieval’s Role in RAG Systems (IR-RAG ’25) at SIGIR 2025, July 17, 2025,
Padova, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/TBD

1 Introduction
Retrieval-Augmented Generation (RAG) systems have emerged as a
powerful solution for grounding large language models in external
document corpora, particularly in knowledge-intensive domains
such as finance, healthcare, and law [7, 9, 12]. Early RAG pipelines
operated on purely textual representations in such domains, ex-
tracting content from scanned documents using Optical Character
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Recognition (OCR) [13]. These text-only pipelines proved effective
for linear documents with clean structure, offering fast and light-
weight retrieval.

Although widely adopted due to their simplicity and efficiency,
traditional text-only pipelines face significant limitations when
applied to visually complex documents. OCR tends to flatten struc-
tural and spatial information, such as table layouts, section headers,
or figure references, into unstructured text, often leading to the
loss of semantic cues critical for accurate retrieval [18, 19]. As a
result, such pipelines frequently underperform tasks that require
an understanding of document layout, tabular reasoning, or visual
context.

Several enhanced text-based methods have been proposed to
mitigate these limitations, such as layout-aware approaches. That
incorporates structural information by applying document layout
parsers [8, 15] to segment documents into semantically meaningful
regions such as titles, captions, tables, and figures, and using these
annotations to guide chunking strategies [17], providing a partial
structural understanding of the document. Furthermore, image cap-
tioning techniques have been used to convert visual elements (e.g.,
charts or figures) that cannot be captured by OCR into descrip-
tive text [20], allowing them to be indexed and retrieved within
a traditional text-only framework. These enhancements extended
the reach of text-based pipelines into visually rich domains while
maintaining relatively low computational overhead.

Nonetheless, evenwith such augmentations, text-based approaches
still operate on symbolic approximations of visual content. They
remain constrained by the quality of the layout or captioning mod-
els and often struggle to preserve fine-grained spatial relationships
and formatting nuances. This led to the emergence of multimodal
pipelines [3, 6], which operate directly on document images using
vision-languagemodels (VLMs). By encoding full-page inputs, these
models jointly capture textual content, spatial layout, and visual
features in a single embedding, dramatically improving retrieval in
visually complex settings. However, they come with steep system-
level costs, including increased memory consumption, indexing,
and retrieval latency.

In parallel to this modality shift, retrieval architectures have also
evolved. Traditional retrieval architectures have embedded these
documents (text or image) into a single vector, enabling fast simi-
larity search. However, such representations compress the infor-
mation, leading to diminished retrieval precision, especially when
fine-grained semantic or structural alignment is required. To ad-
dress this, late interaction architectures [4] have been proposed.
Instead of encoding the input into a single vector, these models
preserve multiple sub-representations and performmore expressive
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similarity computations at retrieval time. While this boosts perfor-
mance, particularly in layout-sensitive queries, it also introduces
higher latency, increased memory usage, and larger index sizes.

Despite the growing variety of pipeline designs, there remains
little guidance on selecting the best approach for a specific task.
This work addresses this gap by comprehensively evaluating state-
of-the-art RAG retrieval pipelines across the two key design axes
discussed: modality (text vs. vision) and architecture (dense vs. late
interaction). Our study benchmarks these pipelines on retrieval per-
formance and across a range of Quality-of-Service (QoS) metrics on
two challenging, real-world datasets that exhibit diverse document
structures and layout complexity. Building on these findings, we
propose a selection methodology for identifying the most suitable
RAG pipeline for a given document corpus and computational con-
straints. This is a deployment-oriented framework for selecting the
most efficient and accurate pipeline.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 describes the retrieval pipelines evalu-
ated in this study. Section 4 presents the experimental setup and
results across effectiveness, latency, and memory usage. Finally,
Section 5 concludes the paper with key takeaways and future di-
rections.

2 Related Work
Retrieval-augmented generation (RAG) has become a central para-
digm for enhancing large language models with access to external
knowledge sources. Early RAG pipelines operated primarily over
textual inputs derived via Optical Character Recognition (OCR),
with minimal attention paid to document layout or visual structure.
Lin and Byrne introduced one of the earliest RAG architectures
based on OCR outputs, integrating Dense Passage Retrieval (DPR)
with a generative language model for open-domain question an-
swering over scanned texts [5]. Their work demonstrated that stan-
dard dense retrieval methods could be extended to semi-structured
documents with text extraction.

To better handle structurally rich documents, several works
have incorporated layout-aware techniques. Yepes et al. proposed
a structure-guided chunking strategy that segments documents
into semantically distinct regions, such as titles, body text, and
tables, using computer vision and NLP methods, thereby preserv-
ing some spatial information during retrieval [17]. However, OCR-
based pipelines, even with such enhancements, remain constrained
by transcription errors and the inherent flattening of spatial lay-
out. Zhang et al. showed that such limitations can significantly
degrade both retrieval accuracy and generation quality, especially
in documents where meaning is intrinsically tied to structure [19].

Recognizing these persistent limitations, recent work has ex-
plored multimodal retrieval pipelines that directly encode visual
signals. Chen et al. introduced MuRAG, a memory-augmented
architecture capable of reasoning over both image and text em-
beddings [1]. Ma et al. proposed a unified embedding space for
document screenshots, enabling dense retrieval over raw visual
input [6]. Similarly, Riedler et al. applied CLIP-based retrieval to
visually complex documents, demonstrating the benefits of joint
vision-language representations [10]. Furthermore, Faysse et al. in-
troduced ColPali, a visual late interaction architecture that extends

the ColBERT paradigm to full-page images [3]. By retaining patch-
level representations and applying token-wise similarity scoring at
query time, ColPali achieves state-of-the-art retrieval performance
on layout-sensitive benchmarks, exemplifying the performance
gains achievable with sophisticated multimodal, late-interaction
approaches.

While this body of work has significantly advanced retrieval per-
formance across various modalities, most evaluations have focused
narrowly on effectiveness metrics such as nDCG and Recall. As
RAG systems become more powerful and complex, understanding
their system-level implications—such as indexing latency, retrieval
latency, and memory footprint—becomes paramount for practical
deployment, especially at scale. In contrast to prior studies, our
work offers a holistic evaluation of retrieval pipelines. We systemat-
ically compare dense and late interaction methods across both text
and visual modalities, not only in terms of retrieval effectiveness but
also with respect to these crucial Quality-of-Service (QoS) metrics,
which are essential for real-world deployment scenarios. To our
knowledge, this is one of the first comprehensive analyses directly
comparing these four pipeline archetypes—Text-Dense, Text-Late
Interaction, Visual-Dense, and Visual-Late Interaction—across both
retrieval quality and detailed operational costs.

3 Proposed Approach
This work proposes a data-driven selection methodology for identi-
fying themost suitable RAG retrieval pipeline given a document cor-
pus and its computational constraints. This approach is grounded
in a comprehensive evaluation of the state-of-the-art pipelines that
represent key axes in modern retrieval system design: input modal-
ity (textual vs. visual) and retrieval architecture (dense vs. late
interaction). This section outlines the design decisions behind these
pipelines, detailing how they preprocess and embed documents and
how their underlying architectures handle retrieval.

Figure 1 illustrates the differences between text-based and multi-
modal pipelines. Text-based pipelines typically follow a multi-stage
preprocessing procedure. Raw document pages are first passed
through Optical Character Recognition (OCR) to extract textual
content. Afterward, the layout analysis step is applied, segmenting
the document into semantically meaningful regions such as tables,
titles, and figures. These regions inform layout-aware chunking
strategies that divide the extracted text into retrieval-ready text
chunks. An image captioning module is applied to generate natural
language descriptions that can be indexed alongside the text for
chunks containing non-textual content, such as images or tables.
Finally, each chunk is embedded using a language model and stored
in a vector database.

In contrast, multimodal pipelines operate directly on full-page
document images. These systems leverage a vision-language model
(VLM) to process the entire page holistically, generating embed-
dings that capture textual, visual, and spatial cues in a unified
representation. This end-to-end approach eliminates the need for
OCR, chunking, or captioning, enabling a more direct and layout-
aware document encoding. The resulting embeddings are stored
directly in the vector database.

Figure 2 illustrates the architectural differences between dense
and late interaction retrieval mechanisms. In dense retrieval, the
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Figure 1: IndexingWorkflows of Text &Multimodal Pipelines

document and query are encoded into single vector representations
using a language or vision-language model. Retrieval is performed
by computing the similarity between these vectors using a distance
metric such as cosine similarity. This highly efficient approach
scales well, making it well-suited for latency-sensitive applications.
However, its compressed representation can lose fine-grained align-
ment, particularly important in structured or layout-dependent
documents. Late interaction architectures address this limitation by
preserving token-level or patch-level granularity during indexing.
Instead of compressing the input into a single embedding, these
models retain multiple embeddings per document, enabling more
detailed and expressive similarity calculations at query time. A
common scoring mechanism is MaxSim, where each query token is
compared with all document tokens, and the maximum similarity
scores are aggregated. While this approach improves retrieval pre-
cision, it also increases storage requirements and retrieval latency.

3.1 Proposed Pipelines
As discussed, we evaluate four retrieval pipelines that span the key
design dimensions in modern RAG systems: input modality (text
vs. vision) and retrieval architecture (dense vs. late interaction).

Text-Dense. This pipeline implements a dense retrieval architec-
ture of over-extracted text. As is common practice, we rely on the
Unstructured1 off-the-shelf tool in the highest resolution settings
for OCR, layout analysis, and chunking (by-title). Afterward, for
chunks that include non-textual elements, we set up a full-fledged
captioning strategy, in which we feed the visual elements to a state-
of-the-art Vision Language Model (Google-Gemini 2 0 Flash2) to
obtain highly detailed textual descriptions of the elements. Each
resulting chunk is then embedded into a dense vector using a text
encoder.

Text-Late Interaction. This pipeline retains the same prepro-
cessing strategy as the dense variant but uses a late interaction
architecture to improve token-level alignment. Instead of embed-
ding each chunk into a single vector, it preserves multiple sub-token
embeddings, allowing fine-grained comparisons between query and
document terms.

Visual-Dense. This pipeline skips OCR and processes full-page
document images directly using a vision-language model. Each
image is encoded into a dense vector that jointly captures visual

1www.unstructured.io
2https://ai.google.dev/gemini-api/docs/models

Figure 2: Dense vs Late Interaction Retrieval Architectures

and textual signals. This design allows for compact, layout-sensitive
representations with minimal preprocessing.

Visual-Late Interaction. This pipeline operates on full-page im-
ages like the dense variant but uses a late interaction retrieval mech-
anism. It produces multi-vector embeddings for each document
patch and performs expressive similarity scoring with patch-level
granularity. This improves retrieval precision for layout-sensitive
queries at the cost of greater computational overhead.

4 Evaluation
This section evaluates the proposed pipelines regarding retrieval
performance across various QoS metrics, including memory con-
sumption, indexing time, and retrieval latency.

The remainder of this section is organized as follows. Section 4.1
describes the experiment setting.Section 4.2 reports on retrieval ef-
fectiveness using standard rankingmetrics to compare the pipelines’
retrieval performances. Finally, Section 4.3 presents our quality of
service (QoS) evaluation, analyzingmemory consumption, indexing,
and retrieval latency.

4.1 Expiriment Setting

3https://qdrant.tech
4https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral
5https://huggingface.co/lightonai/GTE-ModernColBERT-v1
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All experiments were conducted on a single NVIDIA H100 GPU
with 80GB of memory. Each retrieval pipeline was evaluated inde-
pendently using the same document corpus and query set to ensure
a fair comparison. We implemented each pipeline under the same
codebase and hardware to eliminate performance differences due
to infrastructure. To ensure consistency across pipelines, all vector
indices were stored using identical Qdrant7 clusters.

4.1.1 Datasets. We evaluate our retrieval pipelines using the REAL-
MM-RAG benchmark [14], a recent multimodal dataset designed for
realistic document retrieval in structured domains. Unlike earlier
benchmarks, REAL-MM-RAG focuses on long, scanned documents
with complex layouts, incorporating visual elements such as tables,
charts, and diagrams. The queries are generated to reflect natural
user questions rather than direct surface-level matches, providing a
more rigorous test of retrieval models. To assess robustness under
linguistic variation, each query in the dataset is rewritten up to
three times using a large language model, resulting in four levels
of query phrasing. These rephrased versions introduce increasing
syntactic and lexical variation, allowing us to measure how well
retrieval pipelines generalize beyond superficial token overlap and
capture true semantic intent. We focus on two challenging subsets
from this benchmark.

FinReport contains annual financial reports from IBM between
2005 and 2023. These documents include dense narrative content,
structured financial tables, and visually segmented layouts. Queries
typically require extracting specific values, understanding table
structures, and reasoning over multiple modalities. This dataset is
ideal for evaluating performance in table-heavy, layout-sensitive
retrieval tasks.

TechReport consists of IBM technical documentation across
systems like FlashSystem and Power Systems. These documents
are primarily textual but include frequent visual components such
as block diagrams, system schematics, and formatted tables. The
queries in this domain target procedural details and technical de-
scriptions, testing a model’s ability to retrieve relevant explanatory
content embedded in text and images.

These datasets were chosen because they enable a fine-grained
evaluation of how visual modality influences retrieval performance.
Specifically, each document’s proportion of visual content varies in
both datasets, providing a balanced distribution of visually sparse
and rich documents. This makes it possible to observe how retrieval
pipelines perform under different visual conditions. As shown in
Figure 5, both datasets exhibit a broad range of visual content levels.

4.1.2 Models. Each pipeline is built to represent the state-of-the-
art, open-access models in their respective configurations. Specifi-
cally, text-based models were chosen from the top entries on the
MTEB leaderboard [2], while vision-based models were selected
based on rankings in the ViDoRe leaderboard [3]. The following
describes the specific models used for each pipeline and their un-
derlying architectures:

• Baseline: BM25 [11], a sparse retrieval baseline widely used
in information retrieval. BM25 scores documents based on
exact token matches, using term frequency and inverse doc-
ument frequency (TF-IDF) weighting. It does not use any
learned parameters or embeddings.

(a) FinReport

(b) TechReport

Figure 3: Visual Component Rate Histogram across Datasets

• Text-single: Linq-Embed-Mistral4, is built upon the Mistral-
7B architecture, fine-tuned for text retrieval tasks. It gener-
ates dense embeddings of 768 dimensions and supports a
context window of 4096 tokens. The model size is approxi-
mately 7.11 billion parameters.

• Text-multi: GTE-ModernColBERT-v15, a ColBERT-style
embeddingmodel optimized for fine-grained tokenmatching.
It produces 128-dimensional embeddings per token, result-
ing in multi-vector representations. The model comprises
around 110 million parameters and supports a context win-
dow of 8192 tokens.

• Visual-single: nomic-embed-multimodal-7b6, a dense mul-
timodal retriever based on the Bi-Qwen 2.5 architecture, an
extension of the Qwen2.5-VL-7B vision-language model [16].
It generates 768-dimensional dense embeddings per page.

• Visual-multi: ColQwen2.5-7b-multilingual-v1.07, a ColPali-
style retriever built on the ColQwen 2.5 architecture, another
extension of the Qwen2.5-VL-7B vision-language model [16].
Unlike its dense counterpart, ColQwen producesmulti-vector
representations for text and images, enabling more fine-
grained matching between queries and document regions.

4.2 Retrieval Performance
Retrieval pipelines must ultimately be judged by their ability to
return relevant content in response to a query. To quantify retrieval

6https://huggingface.co/nomic-ai/nomic-embed-multimodal-7b
7https://huggingface.co/Metric-AI/ColQwen2.5-7b-multilingual-v1.0
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effectiveness, this section evaluates each pipeline using four widely
adopted top-𝑘 ranking metrics (in our case, we chose 𝑘 = 5):

• nDCG@5 (Normalized Discounted Cumulative Gain):
Captures graded relevance by rewarding highly ranked rele-
vant documents more than later in the result list.

• MRR@5 (Mean Reciprocal Rank): Reflects how early the
first relevant document is retrieved, favoring pipelines that
return relevant results near the top.

• Precision@5:Measures the proportion of retrieved docu-
ments within the top 5 that are relevant.

• Recall@5: Estimates the fraction of all relevant documents
that appear in the top 5 results.

These metrics provide a comprehensive view of retrieval per-
formance, balancing ranking position, accuracy, and completeness.
Table 1 presents retrieval performance across four rephrasing levels
for each pipeline and dataset. To assess the statistical significance of
these results, we adopt a two-stage testing procedure. First, we apply
group-level significance tests to determine whether any pipeline sig-
nificantly differs from the rest. If the group contains three or more
pipelines, we apply a Repeated Measures ANOVA when normality
is satisfied, and fall back to the Friedman test otherwise. For pair-
wise comparisons, we apply either the Paired t-test (for normally
distributed and homogeneous samples) or the Wilcoxon Signed-
Rank Test (for non-normal or heterogeneous samples). Normality is
tested using the Kolmogorov-Smirnov test, and homogeneity using
Levene’s test.

The visual-multi pipeline significantly outperforms all other
methods (𝑝 < 0.01) across all metrics and rephrasing levels, high-
lighting its robustness and superior generalization. Notably, even
the visual-single (dense vision-language) pipeline significantly out-
performs all text-based pipelines across all rephrasing levels and
metrics, confirming that multimodal pipelines; regardless of rep-
resentation granularity, offer a clear and statistically significant
advantage over purely textual models.

Furthermore, while the baseline BM25 performs competitively
on the original query set (occasionally surpassing some text-based
pipelines) its performance degrades very sharply under rephrasing.
This consistent drop underscores BM25’s reliance on exact token
matches and its vulnerability to lexical variation.

Conversely, the proposed pipelines exhibit moderate perfor-
mance drops as query rephrasing increases, reflecting the increased
difficulty of matching semantically similar but lexically varied
queries. However, this degradation is relatively consistent across
architectures, with no single pipeline type disproportionately af-
fected. These results suggest that vision-based retrieval maintains
a consistent advantage even under paraphrasing stress, while all
pipelines are sensitive to linguistic variation.

All pipelines exhibit a moderate performance drop as query
rephrasing increases, reflecting the increased difficulty of match-
ing semantically similar but lexically varied queries. However, this
degradation is relatively consistent across architectures, with no
single pipeline type disproportionately affected. These results sug-
gest that vision-based retrieval maintains a consistent advantage
even under paraphrasing stress, while all pipelines are sensitive to
linguistic variation.

To illustrate the strengths and limitations of different retrieval
pipelines, two qualitative case studies are examined. These exam-
ples highlight how performance is affected across modality (text
vs. vision) and retrieval architecture (dense vs. late interaction).
The first case study comes from our FinReport dataset and focuses
on the impact of modality choice, particularly how OCR-induced
errors can compromise retrieval accuracy in text-based pipelines.
In this example, the query asks about the change in IBM’s total
company debt between 2004 and 2005. However, the years in the
corresponding financial table are entirely omitted during OCR pre-
processing. As a result, both text pipelines fail to locate the correct
context, retrieving irrelevant passages instead. In contrast, the vi-
sual pipelines operate directly on the document image and success-
fully place the correct page at the top of the ranking. This example
underscores how early-stage OCR failures can cascade through
text-based retrieval systems and highlights the robustness of vision-
based models in preserving layout-dependent information.

Case 1: Correct Context

Q: What changed IBM’s company debt from 2004 to 2005?
Year 2005 2004

Total company debt $22,641 $22,927
Non-Global Financing debt $2,142 $607
Non-Global Financing debt

capitalization 6.7% 2.1%

Case 1: OCR output

Total company debt $22,641 $22,927
Non-Global Financing debt $2,142 $607
Non-Global Financing debt
capitalization 6.7% 2.1%

The second case study examines the effects of retrieval archi-
tecture, particularly the distinction between dense and late inter-
action models in the face of linguistic variation. In this example,
all pipelines successfully retrieve the correct document when the
query explicitly includes the term bandwidth, which aligns closely
with the vocabulary used in the document. However, when the
query is rephrased using the semantically equivalent phrase “maxi-
mum amount of data that can be transferred per unit of time”, only
the late interaction models retain the correct context at the top rank.
The dense models, in contrast, fail to match the rephrased version
due to their reliance on surface-level term overlap in fixed vec-
tor representations. This case highlights a key limitation of dense
retrieval in real-world scenarios where query phrasing is highly
variable. It demonstrates how late interaction architectures offer
greater robustness by enabling finer-grained token-level compar-
isons that better capture semantic nuance.
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Table 1: Retrieval Results Across Rephrase Levels Per Dataset

Level Pipeline FinReport TechReport

nDCG@5 MRR@5 Precision@5 Recall@5 nDCG@5 MRR@5 Precision@5 Recall@5

0

BM25 0.43 ± 0.43 0.39 ± 0.43 0.11 ± 0.10 0.53 ± 0.50 0.61 ± 0.42 0.57 ± 0.43 0.14 ± 0.09 0.72 ± 0.45
text-single 0.46 ± 0.42 0.41 ± 0.42 0.12 ± 0.10 0.60 ± 0.49 0.61 ± 0.39 0.56 ± 0.41 0.16 ± 0.08 0.78 ± 0.42
text-multi 0.32 ± 0.43 0.30 ± 0.42 0.08 ± 0.10 0.40 ± 0.49 0.53 ± 0.45 0.50 ± 0.46 0.12 ± 0.10 0.62 ± 0.48
visual-single 0.66 ± 0.39 0.61 ± 0.41 0.16 ± 0.08 0.80 ± 0.40 0.73 ± 0.37 0.69 ± 0.39 0.17 ± 0.07 0.85 ± 0.36
visual-multi 0.74 ± 0.33 0.69 ± 0.37 0.18 ± 0.06 0.89 ± 0.31 0.85 ± 0.28 0.82 ± 0.32 0.19 ± 0.05 0.94 ± 0.24

1

BM25 0.31 ± 0.40 0.28 ± 0.39 0.08 ± 0.10 0.41 ± 0.49 0.45 ± 0.44 0.42 ± 0.44 0.11 ± 0.10 0.56 ± 0.50
text-single 0.43 ± 0.42 0.39 ± 0.41 0.12 ± 0.10 0.58 ± 0.49 0.56 ± 0.40 0.50 ± 0.41 0.14 ± 0.09 0.72 ± 0.45
text-multi 0.28 ± 0.41 0.26 ± 0.41 0.07 ± 0.09 0.34 ± 0.47 0.48 ± 0.45 0.45 ± 0.45 0.12 ± 0.10 0.58 ± 0.49
visual-single 0.59 ± 0.42 0.54 ± 0.43 0.14 ± 0.09 0.72 ± 0.45 0.63 ± 0.40 0.59 ± 0.42 0.15 ± 0.08 0.77 ± 0.42
visual-multi 0.68 ± 0.37 0.63 ± 0.39 0.17 ± 0.07 0.84 ± 0.37 0.78 ± 0.33 0.75 ± 0.37 0.18 ± 0.06 0.89 ± 0.31

2

BM25 0.22 ± 0.37 0.20 ± 0.36 0.06 ± 0.09 0.29 ± 0.45 0.38 ± 0.42 0.34 ± 0.41 0.10 ± 0.10 0.49 ± 0.50
text-single 0.40 ± 0.41 0.35 ± 0.41 0.11 ± 0.10 0.54 ± 0.50 0.53 ± 0.41 0.48 ± 0.42 0.14 ± 0.09 0.69 ± 0.46
text-multi 0.27 ± 0.40 0.24 ± 0.39 0.07 ± 0.09 0.34 ± 0.47 0.46 ± 0.44 0.42 ± 0.44 0.11 ± 0.10 0.56 ± 0.50
visual-single 0.52 ± 0.42 0.47 ± 0.43 0.13 ± 0.09 0.66 ± 0.47 0.58 ± 0.42 0.53 ± 0.43 0.14 ± 0.09 0.71 ± 0.45
visual-multi 0.61 ± 0.40 0.55 ± 0.42 0.15 ± 0.09 0.76 ± 0.43 0.75 ± 0.35 0.72 ± 0.38 0.17 ± 0.07 0.87 ± 0.34

3

BM25 0.18 ± 0.34 0.16 ± 0.33 0.05 ± 0.09 0.24 ± 0.43 0.32 ± 0.41 0.29 ± 0.40 0.08 ± 0.10 0.40 ± 0.49
text-single 0.38 ± 0.41 0.34 ± 0.40 0.10 ± 0.10 0.51 ± 0.50 0.51 ± 0.41 0.46 ± 0.42 0.13 ± 0.09 0.67 ± 0.47
text-multi 0.23 ± 0.38 0.21 ± 0.37 0.06 ± 0.09 0.30 ± 0.46 0.42 ± 0.44 0.39 ± 0.43 0.11 ± 0.10 0.53 ± 0.50
visual-single 0.48 ± 0.43 0.43 ± 0.43 0.12 ± 0.10 0.61 ± 0.49 0.55 ± 0.42 0.50 ± 0.43 0.14 ± 0.09 0.68 ± 0.47
visual-multi 0.57 ± 0.41 0.52 ± 0.42 0.14 ± 0.09 0.72 ± 0.45 0.73 ± 0.36 0.68 ± 0.39 0.17 ± 0.07 0.85 ± 0.36

Case 2: Relevant Document Context

With this setting, the Bronze customers can reach up to
1,000 Mbps, but they have to share the maximum band-
width with all the other customers at the Bronze level. The
Silver customers can reach up to 1,000 Mbps and do not
have to share their limit with other customers in their per-
formance class. The Gold customers are unlimited because
they are not part of any performance class.

Case 2: Original Query

What is the bandwidth limit for Bronze customers in IBM
FlashSystem A9000?

Case 2: Rephrased Query

In the IBM FlashSystem A9000, what is the maximum
amount of data that can be transferred per unit of
time for users with a Bronze subscription?

Figure 4 breaks down retrieval performance by answer modality,
referring to the type of document component in which the relevant
information was embedded. Queries are labeled as text-only when
the answer resides within textual elements such as paragraphs or
titles, and as visual-only when the answer is found within visual ele-
ments like tables or images. This figure further dissects the pipeline
strengths. For "text-only" queries (left column of subplots for each
dataset), we anticipate that while all pipelinesmight perform reason-
ablywell, theVisual-multi andVisual-single pipelines leveraging

advanced VLMs may still hold an edge due to their holistic page
understanding, potentially capturing contextual cues even from
surrounding visual layout that text-only models might miss. The
Text-single and Text-multi pipelines are expected to be strong
contenders here, with Text-multi potentially showing greater ro-
bustness to rephrasing due to its late-interaction mechanism. Con-
versely, for "visual-only" queries (right column of subplots), a more
significant performance gap is expected.Visual-multi should dom-
inate, adeptly handling queries requiring interpretation of tables or
diagrams directly. Visual-single is also expected to perform well,
significantly outperforming text-based pipelines. The text-based
pipelines (Text-single and Text-multi) will likely struggle consid-
erably on "visual-only" queries, their success is highly dependent
on the quality of OCR and any generated captions for those visual
elements. Performance degradation across rephrasing levels (0 to
3) is anticipated for all query types and pipelines, but the visual
pipelines, particularly Visual-multi, might exhibit more graceful
degradation on "visual-only" queries due to their richer representa-
tions. Differences between FinReport and TechReport would also
be telling: the more table-intensive FinReport dataset is likely to
starkly highlight the superiority of visual pipelines for "visual-only"
queries, whereas in TechReport, with its mix of text and diagrams,
the distinctions might be nuanced but still favor visual approaches
for visual queries.

Figure 5 breaks down retrieval performance (nDCG@5) by docu-
ment visual content proportion, with subplots for rephrasing levels
(0 to 3). Visual-multi leads, especially in TechReport. Text-single
is comparable to Visual-single on mostly textual documents but
degrades sharply with more visual content (especially in FinReport).
Interestingly, Text-multi, despite underperforming Visual-single in
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(a) FinReport

(b) TechReport

Figure 4: Retrieval Performance across Rephrase Levels for
Text-Only (left) and Visual-Only (right) Queries for both
Datasets

low-visual contexts, shows some resilience or even stronger results
than Text-single in highly visual documents (FinReport, Level 0-1),
suggesting its finer-grained token interactions might better navi-
gate complex visual layouts indirectly via OCRed textual cues from
those layouts.

4.3 Quality of Service (QoS)
Deployment of RAG systems demands careful consideration of
system-level efficiency. To capture these concerns, each pipeline
is evaluated across three key Quality of Service (QoS) dimensions:
memory consumption, indexing latency, and retrieval latency. Mem-
ory consumption refers to the total size of the vector index stored
in the database. Indexing latency measures the end-to-end time
required to preprocess, embed, and upsert documents into the re-
trieval system. Retrieval latency captures the time needed to embed
a query and retrieve the top-𝑘 most relevant documents. Together,
these metrics reflect real-world constraints such as hardware cost,
scalability, and responsiveness, factors critical when deploying re-
trieval systems over large document corpora.

Table 2 presents the memory consumption of each pipeline. Due
to their multi-vector representations, we can observe that late inter-
action models consume significantly more memory than their dense
counterparts, which store embeddings at the token or patch level.
This granularity allows for improved retrieval fidelity but comes at

(a) FinReport

(b) TechReport

Figure 5: Retrieval Performance across Visual Complexity
for all Rephrase Levels (0-Top Left, 3-Bottom Right)

the cost of larger index sizes. Notably, visual-multi exceeds 5GB in
memory usage, more than 10 times that of the compact visual-dense
model. Interestingly, despite operating at higher embedding dimen-
sionality, the visual-dense pipeline remains more storage-efficient
overall. It encodes entire pages into a single vector, avoiding the
cumulative overhead introduced by chunk-wise embeddings in text-
based pipelines. Showcasing its scalability advantage in large-scale
settings.

Table 2: Total Memory Consumption for both Datasets

Pipeline Memory (MB)
text-single 390.00
text-multi 1079.00
visual-single 340.00
visual-multi 5068.80
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Tables 3 and 4 show the average indexing workflows for both
our datasets, broken down into preprocessing, embedding, and up-
serting stages. As expected, text-based pipelines incur substantial
preprocessing overhead due to OCR, layout parsing, and captioning.
Despite this, their embedding and upsert times remain relatively
lower, particularly for dense variants. In contrast, visual pipelines
skip preprocessing entirely, enabling faster end-to-end indexing,
especially for the dense variant. However, due to the higher dimen-
sionality, the visual multi-pipeline requires significantly longer up-
sert durations. These results highlight a key trade-off: text pipelines
are preprocessing-heavy but compact, while visual pipelines are
plug-and-play but slower to upload.

Table 3: Average Indexing Workflow in Seconds - FinReport

Stage text-single text-multi visual-single visual-multi

Preprocess 10.23 10.23 0.00 0.00
Embedding 0.02 0.18 0.72 0.71
Upsert 1.24 3.26 5.69 6.04
Total 11.49 13.67 6.41 6.75

Table 4: Average IndexingWorkflow in Seconds - TechReport

Stage text-single text-multi visual-single visual-multi

Preprocess 10.70 10.70 0.00 0.00
Embedding 0.51 0.19 0.91 1.07
Upsert 1.89 2.03 6.93 9.00
Total 13.10 12.92 7.84 10.07

Table 5 reports the average retrieval latency across all pipelines,
broken down into query embedding and retrieval components. As
expected, dense pipelines, text-single and visual-single, exhibit sig-
nificantly lower latency, with total times under one second. In
contrast, late interaction pipelines introduce a significant perfor-
mance gap. While text-multi remains within a negligible range,
visual-multi incurs exceptionally high retrieval times, exceeding
20 seconds per query. This discrepancy reflects the computational
overhead of multi-vector retrieval at scale, particularly for high-
dimensional vision-based embeddings.

Table 5: Average Retrieval Latency in Seconds

Pipeline TechReport FinReport

Embedding Retrieval Total Embedding Retrieval Total

text-single 0.04 0.50 0.54 0.03 0.40 0.43
text-multi 0.01 2.99 3.01 0.01 4.19 4.20
visual-single 0.05 0.58 0.63 0.05 0.55 0.60
visual-multi 0.05 22.53 22.58 0.03 27.35 27.39

5 Discussion
Our comprehensive evaluation of textual and multimodal RAG
retrieval pipelines across dense and late interaction architectures
yields several notable trends and practical insights.

First, the Text-multi (late interaction) pipeline consistently un-
derperformed not only its visual counterparts but also the sim-
pler Text-dense pipeline across most retrieval effectiveness metrics,
while still incurring higher memory usage and slower retrieval la-
tency than Text-dense. For instance, it achieved a mean nDCG@5 of
only 0.32 on the FinReport dataset (Level 0 rephrase), significantly
lower than Text-single (0.46) and Visual-single (0.66). In contrast,
among the visual pipelines, Visual-multi (late interaction) achieved
the highest retrieval performance overall, demonstrating the power
of fine-grained, patch-level visual understanding. However, this
superior effectiveness comes at a steep operational cost, particu-
larly in terms of memory footprint (over 5GB) and retrieval latency
(exceeding 20 seconds per query), making it potentially less suitable
for resource-constrained or latency-sensitive scenarios.

Interestingly, our results challenge the common assumption that
vision-based pipelines are invariably slower and more memory-
intensive across the board. The Visual-single (dense) pipeline emerged
as a compelling alternative, delivering significantly better retrieval
performance than both text-based pipelines (e.g., 0.66 nDCG@5 on
FinReport vs. 0.46 for Text-single and 0.32 for Text-multi) while
also offering comparable or superior indexing throughput and the
lowest memory consumption of all tested pipelines. This positions
Visual-single as an excellent candidate for many real-world appli-
cations seeking a balance of effectiveness and efficiency.

Furthermore from our QoS results; we can observe that, em-
bedding time itself was nearly negligible across all pipelines. The
primary bottlenecks varied by modality: visual pipelines were pre-
dominantly constrained by the embedding and vector database
upsert phase (especially Visual-multi), whereas text pipelines were
bottlenecked by the extensive preprocessing phase (OCR, layout
analysis, captioning).

6 Future Work
Our evaluation also revealed an important consideration for fu-
ture benchmark development. Existing retrieval benchmarks, even
those labeled as multimodal, often predominantly emphasize the
retrieval of semantic answers that are textual, even if those an-
swers are located within visual elements like charts or tables. This
can create a bias where the unique challenges and capabilities of
retrieving genuinely non-textual, visually grounded information
are underrepresented with text retrieval from images. Future work
should aim to address this gap by developing more rigid evaluation
methodologies and datasets that specifically target the retrieval
of diverse visual information, moving beyond text embedded in
images.

Complementing this direction, we also plan to explore a hybrid
retrieval strategy that allocates documents to the most suitable in-
dexing pipeline based on their structure and retrieval needs. For ex-
ample, visually complex documents containing tables or figuresmay
be better indexed using late-interaction visual models to improve
retrieval performance, while simpler documents may be handled
more efficiently with dense pipelines. At query time, the system
retrieves results from all pipelines and fuses the outputs, aiming to
reduce memory usage and retrieval latency without significantly
compromising retrieval quality.
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In summary, this study provides a data-driven foundation for
selecting appropriate RAG retrieval pipelines. Practitioners can
use these findings—weighing the trade-offs between visual/textual
modality, dense/late-interaction architecture, retrieval effective-
ness, and QoS metrics—to make informed decisions tailored to their
specific document corpora, task requirements, and operational con-
straints. These insights contribute to the ongoing effort to build
more efficient, effective, and practically deployable RAG systems.
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