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1 Computer Science, Özyeğin University, Istanbul, Turkey
{cihan.eran,onur.keskin,furkan.canturk}@ozu.edu.tr

reyhan.aydogan@ozyegin.edu.tr
2 Interactive Intelligence, TU Delft, Delft, Netherlands

Abstract. This paper introduces a negotiation approach to solve the
Multi-Agent Path Finding problem. The approach aims to achieve a
good trade-off between the privacy of the agents and the effectiveness of
solutions. Accordingly, a token-based bilateral negotiation protocol and
a compatible negotiation strategy are presented. The proposed approach
is evaluated in a variety of scenarios by comparing it with state-of-the-
art centralized approaches such as Conflict Based Search and its variant.
The experimental results showed that the proposed approach can find
conflict-free path solutions with a higher success rate, especially when
the search space is large and high-density compared to centralized ap-
proaches while the gap between path cost differences is reasonably low.
The proposed approach enables agents to have their autonomy; thus, it
is convenient for MAPF problems involving self-interested agents.

Keywords: Multi-Agent Path Finding, Negotiation, Decentralized Co-
ordination, Self-interested Agents

1 Introduction

Technological advancements in the last decades enable autonomous robots and
vehicles to carry out a variety of tasks such as surveillance and transportation.
To achieve their goal, they may need to navigate from one location to another.
Imagine an environment in which hundreds of autonomous robots aiming to
reach certain locations. Such an environment requires a coordination mechanism
to avoid some potential collisions. This problem, allocating conflict-free paths to
agents so as to navigate safely in an environment, is well-addressed in the field of
Multi-Agent Systems and known as Multi-Agent Path Finding (MAPF) problem
[26]. A vast number of studies tackle this problem; some propose a centralized
solution while others focus on decentralized solutions [25].

Centralized solutions rely on full access to all relevant information regarding
the agents and properties of the given environment so that a global solution can
be derived. In contrast, decentralized solutions decouple the problem into lo-
cal chunks and address the conflicts locally [10]. Without any time constraints,
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centralized approaches can find optimal solutions if there exist. However, the
performance of centralized solution approaches can suffer in high density and
complex environments [24, 8]. Besides, full information may not always be avail-
able due to the limitation of communication, sensors, or privacy issues. On the
one hand, decentralized approaches can deal with uncertainty and scalability
issues and produce admissible solutions. However, they may overlook a potential
optimal solution and end up with suboptimal solutions.

This work pursues a decentralized approach to the MAPF problem targeting
a good trade-off between privacy and effectiveness of the solutions. As agents can
resolve their conflicts for varying problems from resource allocation to planning
through negotiation [13, 19, 15, 3], we advocate to solve the aforementioned prob-
lem in terms of negotiation and accordingly propose a token-based alternating
offers protocol. In the proposed approach, agents share their partial path infor-
mation with only relevant agents that are close to them to some extent. If they
detect any conflict on their partial path, they encounter a bilateral negotiation
to allocate required locations for certain time steps. To govern this negotiation,
this study introduces a variant of alternating offers protocol enriched with token
exchanges. By enforcing the tokens’ usage, the protocol leads agents to act col-
laboratively and search unexplored paths so that there is no conflict anymore.
A path-aware negotiation strategy is also presented in line with the protocol.
There are a few attempts to solve the MAPF problem in terms of negotiation
[14, 21, 22]. Either they require sharing full path information with others, or
they consider one-step decisions such as who will move to a certain direction
at the time of conflict, or they aim to resolve the conflict in one shot (i.e., col-
laborate or reject). In contrast, our approach aims to reduce the complexity of
the problem by resolving the conflicts in subpath plans iteratively instead of the
entire path plans, thereby respecting the agents’ privacy to some extent.

This paper is organized as Section 2 describes the problem addressed in this
paper, while Section 3 lays out the proposed solution approach, introduces a new
variant of Alternating Offers Protocol and a compatible negotiation strategy in
line with that protocol. Experiment setup and results of the experiments are
presented in section 4. This paper’s main contributions and planned future work
are discussed in Section 6.

2 Problem Statement

Multi-Agent Pathfinding (MAPF) as defined in [26], is the problem of assigning
conflict free paths to agents from their respective starting locations to their
destinations. Formally, we have k agents denoted by A = { A1, A2, ..., Ak }
navigating in an undirected graph G = (V,E) where starting and destination
location for each Ai are denoted by si ∈ V and gi ∈ V respectively. The path of
each agent Ai is denoted by πi, a sequence of vertices indexed by each time step
0→ n, (s0i , ..., g

n
i ). πt

i ∈ V corresponds to current location of Ai at time step t.
At any time step, the agents cannot be located in the same vertex – πt

i 6= πt
j ∀
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i 6= j, and traverse the same edge. A swapping conflict occurs when πt
i = πt+1

j

∧ πt+1
i = πt

j ∀ i 6= j.
In this paper, agents are located in a M ×M grid-like environment where

each cell corresponds to a vertex as illustrated in Figure 1a. Each agent has an
initial path to follow in the addressed problem to reach their destination, shown
by dashed lines in the grid. For the current example, we have three agents A,
B, and C whose planned paths are colored in their respective colors (i.e., red,
blue, and green). Here, an agent located in a cell can only move to their vertical
and horizontal adjacent neighboring cells (i.e., cardinal directions). For instance,
Agent A located in (2, 2) can move to one of the following cells: (1, 2), (3, 2),
(2, 1), and (2, 3). In the proposed framework, agents cannot wait at a certain
cell unless agents reach their destinations. That is, πt

i 6= πt+1
i whereas πt

i 6= gi.
As seen in the example, there is a conflict between Agent A and C at time step
t=2 (cell (3, 3)). They need to resolve this conflict to achieve their goals. Final
solutions will be evaluated under the objective of some of the individual costs,∑k

i=1 |πi| where individual cost of each agent i corresponds to their path length
denoted by |πi|. Furthermore, when an agent reaches its destination, it stops
there to act as an obstacle for other agents. This behavior makes this problem
a stay at target MAPF problem.

(a) (b)

Fig. 1: Example Environment & Field of View Representation

3 Proposed Approach

This work presents a decentralized solution in which agents autonomously nego-
tiate with each other in order to refine their path to avoid possible collisions. The
main challenge is to deal with the uncertainty about the environment due to the
limited capacity of the sensors, communication, or some privacy concerns. Most
real-world applications are partially observable where the agents can perceive
some relevant aspects of the environment. For instance, a robot may not per-
ceive all objects that are far from its current location. Light detection and range
finding sensors can detect up to a certain distance. Similarly, wireless commu-
nication systems also have limited communication capabilities. Agents may not
exchange information with each other if their distance is above a threshold value.
Besides, full information is not always available due to the characteristics of the
environment. For example, drivers in traffic do not know where other drivers
are going. Furthermore, agents may be reluctant to share all information due to
their privacy. For instance, they may not be willing to reveal their destination.
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In our framework, agents are located in a grid as shown in Figure 1b. Ini-
tially, each agent knows only their starting location, destination, and a path
plan to reach their destination. Those planned paths are shown in colored dot
lines in the grid for each agent. For simulating the aforementioned partially
observable environment, we adopt the concept of field of view. The framework
enables agents to access a limited portion of other agents’ planned paths within
a certain proximity and share their own. In other words, an agent’s field of view
determines the scope of its communication and perception capacity. An agent
can only observe and communicate with other agents if they are within its field
of view. That is described as a certain number of cells d from its location. For
instance, when d is equal to 1, the boundary of the field of view is shown by a
red rectangle for Agent A. In such a case, Agent A can receive/send information
from/to only Agent C, which is located in the scope of Agent A’s field of view
and vice versa. However, in the given snapshot, Agent B cannot communicate
or see other agents at that time.

In this framework, agents broadcast their sub-planned path. Agents are free
to determine to what extent the path to be shared with other agents in the field
of view. In our experiments, agents share their current subpath with a length
of 2d. If any conflict is detected by one of the agents, they can engage in a
negotiation session. For example, when d is equal to 1, agents will share their
current subpath with a length of 2 (i.e., its next two moves) with the agents
located the scope of their field of view. Agent A broadcasts its current subpath
as Broadcast : [πt=1

A = (3, 2), πt=2
A = (3, 3)] while Agent C shared its own as

Broadcast : [πt=1
C = (2, 3), πt=2

C = (3, 3)]. Since agents would detect a conflict in
the vertex (3, 3) at t=2, Agent A and C start negotiating on the allocation of
vertices on their path since they detect a conflict in (3, 3).

When an agent detects a conflict with more than one agent, which negotiation
to be held first is determined in first come first serve basis. For example, if d
is 2, then Agent B and Agent C will share their subpaths with a length of 4
with Agent A. Agent A may first negotiate with Agent B if Agent B’s message
has been received before Agent C’s one. Afterward, it can encounter a bilateral
negotiation with Agent C. After carrying out any successful negotiation, agents
will update their path accordingly. A number of negotiation sessions might be
held until resolving current conflicts. If there are no conflicts left in the current
field of view, agents move to their next location in their path. Once an agent
reaches its desired destination, it will not encounter a negotiation anymore. The
negotiation between agents is carried out according to the proposed token-based
negotiation protocol. The details of this protocol and a specific bidding strategy
particularly designed for this protocol to tackle the MAPF problem are explained
in the following sections.

3.1 Token-based Alternating Offers Protocol (TAOP)

The proposed framework requires agents to engage in negotiation to resolve
conflicts in their paths. At a given time, the conflict may occur either between
two agents or among multiple agents. When it happens among more than two
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agents, we can formulate it as multiple bilateral negotiations and consider it a
multilateral negotiation. As it may be harder to find a joint agreement, especially
when the number of participants is high [4], the proposed approach aims to solve
the conflicts in multiple consecutive bilateral negotiations. For simplicity, agents
perform their bilateral negotiations consecutively. That is, a new negotiation can
start after completing the previous one.

In the proposed approach, when there is a conflict in two agents’ sub-path,
agents negotiate on allocating the relevant vertices for certain time steps. Follow-
ing the previous example illustrated in Figure 1b, Agent A may claim to allocate
the vertices at (3, 2) at time t = 1, (3, 3) at time t = 2 while Agent C may aim
to allocate the vertices at (2, 3) at time t = 1, (3, 3) at time t = 2. Depending
on how the negotiation proceeds, they may concede over time and change their
request on vertex allocations to come up with an agreement. If agents find an
agreement, they are supposed to obey the allocation for the other party. That is,
agents are free to change their own path as long as their current path allocation
does not violate the agreed vertex allocation for the other party. For example,
when Agent C accepts Agent A’s vertex allocation for time steps t = 1 and
t = 2, Agent C confirms that it will not occupy those vertices to be allocated by
Agent A for the agreed time steps.

The interaction between agents needs to be governed by a negotiation pro-
tocol. In automated negotiation, agents mostly follow the Stacked Alternating
Offers Protocol [5] in which they exchange offers in a turn-taking fashion until
reaching a predefined deadline. This protocol does not force the agents to come
up with an agreement. If both agents are selfish, they may fail the negotiation.
However, finding a consensus plays a key role in the context of MAPF. Therefore,
agents preferably follow a protocol leading them to reach an agreement. Accord-
ingly, we introduce a novel token-based negotiation protocol namely Token-based
Alternating Offers Protocol (TAOP) inspired from Monotonic Concession Pro-
tocol (MCP) [23] and Unmediated Single Text Protocol (USTP) [16]. According
to MCP, agents make simultaneous offers in a way that either they can stick to
their previous offer or make a concession. If both parties stick to their previous
offers, the negotiation ends without any consensus. Otherwise, agents continue
negotiation until reaching an agreement or failing the negotiation. This protocol
leads agents to complete the negotiation without setting a predefined deadline.
However, there is a high risk of ending up with a failure. In USTP, agents inter-
changeably are becoming a proposer or voter during the negotiation. Initially,
a number of tokens are given to each agent where agents can use those tokens
to override other’s reject votes. One agent starts with a random offer, and the
other agent votes to accept or reject it. If the other agent accepts, it is considered
as the most recently accepted bid. This interaction is repeated multiple times,
and the most recently accepted bid is updated over time. At the end of the ne-
gotiation, the most recently accepted bid is considered as the agreement. Here,
the tokens are used to incentivize truthful voting of agents to not manipulate
the system by rejecting all offers. Since this protocol is particularly designed for
large-scaled negotiation problems, the generated bids are variants of an initial
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random offer, not directly applicable to our problem. On the other hand, the
token idea can enforce the agents to concede over time in a fairway.

Basically, the proposed token-based alternating offers protocol is a variant
of alternating offers protocol enriched with token exchanges. One of the agents
initiates the negotiation with an offer. The receiving party can accept this of-
fer, make a counteroffer, or end the negotiation without agreement. The main
difference is that agents are not allowed to repeat their previous offers unless
they pay for them. The protocol assumes that each agent owns a predefined
number of tokens, T . Those tokens are used to enable an agent to make one
of its previous offers during that negotiation. Different from MCP, agents are
not required to make conceding moves. The essential requirement for agents is
to make unproposed offers during the negotiation or pay tokens to repeat an
offer. In addition to the given offer, agents send an acknowledgement message
specifying the number of tokens to be used to repeat an offer previously made
by the same agent. The general flow of the proposed protocol is given below:

1. One of the agents makes an offer specifying its request to allocate some ver-
tices for certain time steps and sends an acknowledgement message regarding
the usage of its token in the current negotiation. Initially, the usage of tokens
is set to zero.

2. The receiving agent can take one of the following actions:
– ends the negotiation without any consensus.
– accept the received offer and complete the negotiation successfully.
– makes an offer specifying the vertices allocation for itself that has not

been offered by that agent yet and sends the acknowledgement denoting
the accumulated usage of its tokens.

– can repeat one of its previous offers, increase the usage of its tokens by
one, and sends the token acknowledgement message.

3. If the agent accepts or ends the negotiation, negotiation is finished. The
accepting agent receives tokens amounting to the calculated token usage
difference from its opponent, min(Topp,self −Tself,opp, 0) where Topp,self and
Tself,opp denote the total number of tokens used by the opponent and the
accepting agent during the entire negotiation respectively. If the accepting
agents spend more tokens than its opponent, it does not receive any tokens.
Otherwise, the receiving agent can take any action mentioned in Step 2.

Considering the scenario given in Figure 1b, an example negotiation trace
between Agent A and C is illustrated in Figure 2. Agent A initiates the negoti-
ation with its offer PA1 requesting to claim the vertices (3, 2) for t = 1 ad (3, 3)
for t = 2. Agent C does not accept this offer and makes its own offer specifying
the allocation for itself, such as (2, 3) and (2, 4). Since Agent A insists on its
previous offer, it increases its token usage by one. As seen from the example,
agents send an acknowledgement message and their offer in each turn. In the
fourth round, Agent C accepts Agent A’s offer. It confirms that Agent C will
not move to (3, 2)t=1 and (3, 3)t=2. In return, Agent A will pay 2 tokens (TA,C-
TC,A). It is worth to note that the token exchange is performed at the end of the
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negotiation depending on who accepts the offer. If an agent needs to pay tokens,
but it has an insufficient number of tokens, the agreement is not committed (i.e.,
negotiation fails).

Fig. 2: Example Interaction between Negotiating Agents

3.2 Path-Aware Negotiation Strategy

Existing negotiation strategies focus on only which offer to make at a given time
and when to accept a given offer [6]. Therefore, there is a need to design a new
strategy taking token exchanges into account. Hereby, we propose a negotiation
strategy determining when to repeat an offer or to generate a new offer. The
proposed strategy, namely Path-Aware negotiation strategy, aims to utilize the
information available to determine when to insist on its current path. It is worth
noting that each agent generates its possible paths leading them to their desti-
nation by using A-Star Algorithm in a way that the generated paths would not
conflict with the neighbor agents’ current path. Afterward, they sort those paths
in descending order with respect to their path cost.

Algorithm 1 describes how an agent negotiates according to Path-Aware
Negotiation Strategy. At the beginning of the negotiation, the current path in the
field of view (Pcurrent)is the relevant part of the optimal path (i.e., the shortest
path to its destination). It corresponds to the first offer in the negotiation. When
the agent receives an offer from its opponents, it checks whether it is possible
to generate a path that is of equal length or shorter than its current path to
the destination (Line 1). If so, it accepts its opponent’s offer (Line 2). Note
that the path generation function takes the opponent’s offer, Oopponent as a
constraint while generating the best possible path to the destination. If the
agent’s remaining tokens are greater than the length of the remaining path to
the destination (Line 4), it decides to repeat its previous offer and updates
its remaining tokens accordingly (Line 5). Recall that for each repetition, the
agent needs to use one token. Otherwise, it concedes and sets the next possible
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best path from the sorted path space PSpace, as its current path in its field of
view (Line 7). Accordingly, the agent offers its previous path in the field of view
Pcurrent (Line 9). Note that agents have to concede if they don’t have any tokens
left.

Algorithm 1: Negotiation Strategy of Path-Aware Agent

Data:
Tremaining : Agent’s remaining tokens count
Premaining : Agent’s remaining path to destination
Pcurrent : Current path in FoV
PSpace: Sorted path space
Oopponent : Opponent offer

1 if |Pcurrent| ≥ |generatePath(Oopponent)| then
2 accept()
3 else
4 if Tremaining > |Premaining| then
5 Tremaining −−
6 else
7 Pcurrent ← PSpace.next()
8 end
9 offer(Pcurrent)

10 end

4 Evaluation

We evaluated the proposed approach empirically from three different perspec-
tives: by comparing its performance with centralized solutions, by comparing
the performance of the Path-aware negotiation strategy with a baseline strat-
egy, and by studying the effect of field of view (FoV) in the proposed approach.
The following sections will explain our experimental setup and result elaborately.

4.1 Experimental Setup

To inspect the performance of our decentralized approach against centralized
approaches to resolve conflicts in MAPF, we make a comparison with two well-
known centralized methods, namely Conflict-Based Search (CBS) [24] and CBS
with the Weighted Pairwise Dependency Graph Heuristic and Rectangle Rea-
soning by Multi-Valued Decision Diagrams, named WDG+R in [17]. These cen-
tralized solutions are detailed below. We used the code of WDG+R provided
by its authors. We removed wait-action (no movement in a time step) from the
action space of agents in all solvers to be suitable for the problem definition in
Section 2. All experiments were carried on machines with the computing power
of 16-Core 3.2 GHz Intel Xeon and 32 GB RAM. Each scenario configuration
experimented with 100 different scenarios in no obstacle, 8x8, and 16x16 grid
environments.
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– CBS: Conflict-Based Search (CBS) [24] is a two-level algorithm for central-
ized and optimal MAPF. At the low-level search, a single path is planned
by an optimal shortest-path algorithm, like A*, under given constraints. A
constraint is a tuple (i, v, t) where agent ai is prohibited from occupying
vertex v at time step t. At the high-level search, a constraint tree (CT) is
operated to resolve conflicts between paths. CT is a binary tree of constraint
nodes. Each CT node consists of a set of constraints for each agent. When
a conflict is found between two agents, two child nodes are generated. In
each child node, one agent in the conflict is prohibited from using conflicted
vertex or edge by adding a constraint, and a new path is searched for that
agent at the low level under the new constraint set.

– WDG+R: It is one of the recently enhanced variants of CBS and a state-
of-art optimal MAPF solver. WDG+R operates smaller CTs by using an
admissible heuristic in the high-level search named the Weighted Pairwise
Dependency Graph (WDG) Heuristic. WDG represents the pairwise depen-
dencies requiring some cost increase to resolve conflicts. Value of the mini-
mum vertex cover of WDG serves as an admissible heuristic of a lower bound
to cost increase to resolve conflicts. Besides, it efficiently resolves the rectan-
gle conflicts by a reasoning technique introduced to CBS in [18]. A rectangle
conflict occurs when two locations are required to be taken by both agents
simultaneously, which means a certain cost increase to resolve the conflict.
These enhancements provide a large factor of speedup compared to CBS.

We generated MAPF scenarios from the MAPF benchmark datasets provided
by [25]. Table 1 provides the information of experimented MAPF scenarios.
We set eight different problem configurations, which are 10, 15, 20, and 25-
agent scenarios in an empty 8×8 grid, and 20, 40, 60, and 80-agent scenarios
in an empty 16×16 grid. For each configuration, 100 different scenarios have
experimented with randomly distributed path lengths between 2 and 14 for 8×8
grid scenarios, and 4 and 24 for 16×16 grid scenarios. We determined the number
of agents in the environment to such levels to observe remarkable breakdowns
in success rates of CBS and WDG+R, which helps to see which MAPF problem
complexity levels these centralized MAPF solution approaches become to fail
at. 8×8 grid scenarios are experimented to benchmark CBS specifically and our
proposed solution considering the performance evaluation of CBS done in [24].
In 16×16 grid scenarios, we aim to see when the scaling capability of centralized
and decentralized solutions are discriminated by changing the number of agents
with large increments.

We set the runtime of CBS and WDG+R to 30 minutes 8×8 for grid scenarios
and 1 hour for 16×16 grid scenarios in favor of obtaining optimal solutions for a
rigorous evaluation of experiments, although CBS benchmarked in 5 minutes by
[24] and WDG+R benchmarked in 1 minute by [17]. However, the runtime metric
does not represent the success capability of our decentralized solution since it
would proceed in real-time. Nevertheless, we limited the simulation runtime of
the decentralized MAPF framework. In addition, decentralized solution can fail
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Table 1: Scenario Types
Configuration Name Grid Size Number of Agents Initial Path Range

Config-1 8x8 10 2-14

Config-2 8x8 15 2-14

Config-3 8x8 20 2-14

Config-4 8x8 25 2-14

Config-5 16x16 20 4-24

Config-6 16x16 40 4-24

Config-7 16x16 60 4-24

Config-8 16x16 80 4-24

to find a solution, when inactive agents close off movement to destination (Figure
3a), or surround others (Figure 3).

(a) (b)

Fig. 3: Agent and Destination Blocked by Agents Reached Destinations

The field of view (FoV) is set to 2 for all agents to experiment with all 8×8
and 16×16 scenarios. Setting FoV to 1 corresponds that agents can be aware of
conflicts just a one-time step before, limiting the practicality of negotiation to
resolve conflicts. To observe the effect of FoV in our framework’s solution per-
formance, we repeat the experiments of Config-6 and Config-7 scenarios, setting
FoV to 2, 3, and 4 for all agents. We do not test the effect of field of view in 8×8
grid environment since it is not much practicable to change the range.

4.2 Experimental Results

Each metric for the results of each solution method is averaged over scenarios
solved by itself throughout the evaluations in the following subsections.

Decentralized versus Centralized Approach: Solution rate (R) of the de-
centralized MAPF framework with Path-aware agents (PA) and the centralized
solutions for 8×8 and 16×16 grids are represented in Figure 4a where the left
chart corresponds for 8×8 grid results, and the right chart corresponds for 16×16
grid results. Although the decision complexity of agents is essential to measure
the framework performance, this basic agent strategy outperforms CBS in 8×8
grid scenarios and also WDG+R in 16×16 grid scenarios in terms of R. How-
ever, PA results are not desirable 8×8 grid scenarios when the solution quality is



A Decentralized Token-based Negotiation Approach for MAPF 11

(a) Solution Rate

(b) Average Normalized Path Difference

Fig. 4: Decentralized versus Centralized Approach Results

considered according to the left chart in Figure 4b. To measure how much extra
cost is produced to resolve conflicts in optimal paths, we use a metric named
Average Normalized Path Difference (Davg), which is equal to (C1-C0)/k where
C0 is the cost of initial paths of all agents and C1 is the sum of individual path
costs (SIC) value attained in a solution. This metric means how much-added
cost is yielded to resolve conflicts compared to C0. Davg gives the information
of how much cost increase occurs in which environments for the side of the self-
interested agent only consider its own cost valuation based on its initial path
cost. 4b shows that PA performs well in the scenarios of the high number of
agents in larger maps, which indicates the scalability of the decentralized solu-
tion compared to centralized solutions. However, only one scenario of Config-8
was solved by PA because agents cannot negotiate to resolve a conflict caused
due to the demonstrated situations in Figure 3. We note that Config-8 scenarios
are not evaluated in the following metrics since optimal solutions could not be
obtained for them.

As all scenarios are not solved by WDG+R, we do not have the complete
information to measure the solution quality of the decentralized solutions since
optimal solutions are taken as the basis for it. It is not a health assessment to
compare the cases that CBS and WDG+R can solve with the scenarios they
cannot solve, but PA solves. For this reason, there is a need for a variable that
shows the relationship between solution rates and normalized path differences
more dynamically, which is Davg/R. Figure 5 has enabled dynamic changes to
be observed in a wide range with Davg/R. Although CBS seems to be more
successful than PA in 8×8 grid scenarios in terms of Davg, Figure 5 shows that
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Fig. 5: Average Normalized Path Difference / Solution Rate

Path-Aware agents are more successful when considering the performances in
new metric solution rates. It is observed that CBS fails dramatically in scenarios
involving 25 Agents. When the 8×8 and 16×16 grid scenarios are compared, it
is observed that the performance of the WDG+R remained the same, while the
performance of the Path Aware Agents was 10 times better. This result shows
that in larger domains, decentralized and intelligent agents such as Path-Aware
have less performance difference from optimal solvers and high privacy support.

Effect of Intelligence of Agents: To figure out the effect of intelligence of
agents in our framework, a baseline representing a random decision behavior
for the negotiation protocol is needed. Therefore, we present a basic decision
mechanism adapted by an experimental agent named Random Agent. Random
Agent accepts its opponent’s offer with %50 probability. Otherwise, it repeats its
previous offer with %50 probability if it has enough tokens. It generates its offer
space exactly in the same way as the Path-aware strategy. The main difference
is about accepting and deciding the usage of tokens. We highlight that Random
Agent provides a lower bound performance for any prospective self-interested
rational agent designed for the proposed decentralized MAPF framework.

Figure 6a shows the total number of token exchanges in a session for both
agent types. Negotiation between Path-Aware agents results in less number of
token exchanges compared to negotiations of Random agents, which shows that
Path-Aware agents insist on their offers only to maintain their own cost balance,
whereas Random agents insist or concede randomly. Negotiations between Path-
Aware agents reach an agreement faster than random agents in all environments,
as seen in Figure 6b. The number of negotiations by Random agents represents a
baseline for the negotiation protocol if the agent decides indifferent to counter’s
bids. So, it can be concluded that when agents behave more analytical, they
can reach an agreement faster with our proposed negotiation protocol. Since the
solution rates of the decentralized solution with Random agents (RA) and the
decentralized solution with Path-Aware agents (PA) is low, we do not seek a
trend for the curves in Figure 6.

Effect of Field of View: We experiment with 40 and 60-agent scenarios in
16×16 grid with different FoV values to figure out how the perception and in-
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(a) Total Number of Token Exchange (b) Number of Negotiations/Agent

Fig. 6: Path-Aware Agent versus Random Agent

Fig. 7: (a) Solution Rate with FoV, (b) Average Normalized Path Difference with
FoV, (c) Average Normalized Path Difference / Solution Rate with FoV

formation broadcast range of agents relate to the solution performance of the
decentralized MAPF approach. This relation branches in three aspects, R, Davg,
and Davg/R. Figure 7 presents the related curves for PA and RA. Change in FoV
of Random agent has no general trend in R in all scenarios, while the increase in
FoV decreases R in all scenarios when all agents are Path-Aware. This decrease
is 1% for 40-agent scenarios and 14% for 60-agent scenarios, which shows that
Path-Aware agents struggle to agree in dense environments when they have a
wider FoV. On the other hand, Path-Aware agents can have better paths with
wider FoV according to Davg trend in Chart B. Besides, the third chart in Figure
7 shows that the solutions achieved with PA are much better in terms of Davg/R
compared to RA solutions. So, it can be concluded that intelligent agents can
preserve their own path cost interest by negotiating with others under TAOP.
This output is expected because Path-Aware agents change their bidding behav-
ior based on current cost analysis (of remaining path length and the remaining
token amount at the negotiation time). This evaluation becomes more useful if
more information about the environment is used.

In large FoV cases, Random agents tend to perform worse as their decision-
making process is stochastic. As the accepted offers are registered, having a large
FoV thus results in more constraints for agents, which reduces path search space.
Path-Aware Agents provide solutions to these problems both in acceptance and
by spending their tokens correctly. On the other hand, Random Agents do not
have a specific strategy other than entering into a negotiation and accepting long
paths randomly in the face of these problems. This situation is reflected in the
average number of negotiations per agent. When looking at the difference of the
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average negotiation per agent between FoV 2 and FoV 3, Random agents (2.17)
are 2.59 times more than Path-Aware agents (0.83).When the same variable is
examined between FoV 3 and Fov 4, Random agents (2.11) increased 5.90 times
more than Path-Aware agents (0.35).

5 Related Work

We classify approaches to resolve conflicts in MAPF based on two factors: the
centralization of solution mechanism and cooperation of agents. Centralized solu-
tion approaches to pathfinding of cooperative agents provide optimal plans [11].
If a trusted center with the information of all agents moving in a certain area
and the ability to command all of them is not available, negotiation can be used
for a conflict resolution mechanism [1, 12, 22, 21, 27]. One negotiation approach
to allocating resources to multiple parties is Combinatorial Auction (CA). To
resolve conflicts between self-interested agents in an environment, Amir et al. re-
duce MAPF problem to CA and implements iBundle, an iterative CA algorithm
[20], for MAPF [1]. Self-interested agents might not provide their own utiliza-
tion truthfully to the auctioneer. Considering this aspect of the auction, Amir et
al. propose Vickrey-Clarke-Groves (VCG) auction for MAPF, a strategy-proof
auction mechanism for manipulation attempts by the agents. In this iBundle
auction, the auctioneer is exposed to a computational burden as agents submit
their all-desirable bundles, which requires even impractical auction time. Ad-
dressing this limitation of iBundle, Gautier et al. introduce an auction design
that allows agents to submit a limited number of bundles so that a feasible al-
location is more likely to be found, and the auction terminates in fewer time
[12]. They also provide a further auction solution procedure applied if a feasible
allocation to submitted bundles is not found. Auctioneer finds some feasible al-
locations using a MAPF solver, and it evaluates them to maximize social welfare
using its privileged knowledge gained in the bidding. Then it proposes the most
valuable allocation to the agents. Auction ends when all agents accept one al-
location; otherwise, the auctioneer updates allocation values based on rejecting
agents’ bids and proposes the best new allocation.

Key challenges of addressing MAPF problem within the decentralized method
can be summarized as establishing a framework for agents to use while inter-
acting with the environment, defining an interaction protocol between agents,
and designing agents that are able to reach a solution [7, 9, 2]. In their paper
Purwin et al., proposes a decentralized framework where agents allocate por-
tions of the environment in which they move. Similarly, the framework proposed
in this paper also allows agents to exchange vertex information while trying
to allocate a conflict-free path. However, their negotiation protocol resolves the
conflicts in one shot, whereas the protocol proposed in this paper allows agents
to engage in negotiation sessions in length. Sujit et al. focuses on resolving a
task allocation problem in their work, using a multilateral negotiation structure
[27]. Agents only utilize the presented token structure to determine whose offer
to accept in a deadlock situation that might happen, in which the agent with
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the least number of tokens is selected. Whereas in this paper, tokens are treated
as a limitation in making repeated offers. The work of Pritchett et al. defines
a simultaneous bilateral negotiation structure to resolve conflicts in air traffic
control [21]. Their work defines a structure where agents negotiate over the tra-
jectories that they will take. In each round of the negotiation session, the cost of
all offers increases until an agreement is reached. While due to the nature of the
environment, this forces agents to concede over time, the protocol proposed in
this paper defines a hard constraint on how many times an agent can refuse an
opponent’s offer. Inotsume et al. demonstrates a negotiation-based approach to
MAPF from the perspective of an operator [14]. In their setup, each agent tries
to maximize their utility by completing tasks, reaching a certain destination in
a shared space. An area manager interface manages this shared space, and each
agent is expected to submit their desired paths to the area manager before they
begin their movement. Here, the area manager is the entity that checks whether
each path conflicts with already reserved paths or prohibited locations. As they
utilize a path reservation system managed by a non-agent entity, this setup de-
viates from the proposed decentralized approach. Additionally, they propose a
trading structure for their paths, which can correspond to token exchange. They
value these tokens equivalent to each edge traversal, whereas our study values
tokens in a completely different economy. Nevertheless, both systems focus on
resolving path conflicts using negotiation mechanisms.

6 Conclusion

This paper addresses how self-interested agents can coordinate in a grid environ-
ment to reach their destination without any collision and proposes solving the
conflicts on the paths by means of bilateral negotiations. Accordingly, we propose
a novel negotiation protocol and a compatible path-aware negotiation strategy.
The proposed approach enables agents to optimize their paths in real time with-
out sharing their complete path information with everyone. This problem is
harder to solve especially when the grid size gets larger and higher-density (i.e.,
large number of agents and long paths per agent). In such cases, the proposed
approach has an edge over centralized approaches. The analysis of experimental
evaluation showed that Path-aware negotiation approach finds reasonably good
solutions in most of the cases and it performed better on aforementioned chal-
lenging scenarios than the state-of-the-art centralized solution such as CBS and
WDG+R. As future work, we are planning to extend our approach by adopt-
ing multilateral negotiation instead of multiple consecutive bilateral negotiations
and to compare its performance with the current approach. In the current work,
agents should move constantly in line with their path. However, enabling agents
to wait for any time step (i.e, no move action) may lead agents to discover
new solutions while it increases the search space dramatically. We think of in-
corporating wait action to our framework as well as other variants of actions.
Furthermore, it would be interesting to design more sophisticated negotiation
agents thinking ahead when they use their tokens.
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fel. Optimal negotiation decision functions in time-sensitive domains. In
2015 IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence (WI) and Intelligent Agent Technologies (IAT), volume 2, pages 190–
197, Dec 2015.

[7] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Multi-
agent path planning with multiple tasks and distance constraints. In 2010
IEEE International Conference on Robotics and Automation, pages 953–
959. IEEE, 2010.

[8] Vishnu R. Desaraju and Jonathan P. How. Decentralized path planning for
multi-agent teams with complex constraints. Auton. Robots, 32(4):385–403,
May 2012.

[9] Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schüller. A general
formal framework for pathfinding problems with multiple agents. In Pro-
ceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
AAAI’13, page 290–296. AAAI Press, 2013.

[10] M. Erdmann and T. Lozano-Perez. On multiple moving objects. In Pro-
ceedings. 1986 IEEE International Conference on Robotics and Automation,
volume 3, pages 1419–1424, 1986.

[11] Ariel Felner, R. Stern, S. E. Shimony, Eli Boyarski, Meir Goldenberg,
G. Sharon, Nathan R Sturtevant, G. Wagner, and Pavel Surynek. Search-
based optimal solvers for the multi-agent pathfinding problem: Summary
and challenges. In SOCS, 2017.



A Decentralized Token-based Negotiation Approach for MAPF 17

[12] Anna Gautier, Bruno Lacerda, Nick Hawes, and Michael Wooldridge. Ne-
gotiated path planning for non-cooperative multi-robot systems. In IJCAI,
2020.
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