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Abstract This paper introduces a negotiation framework to solve Multi-
Agent Path Finding (MAPF) Problem for self-interested agents in a decen-
tralized fashion. The framework aims to achieve a good trade-off between
the privacy of the agents and the effectiveness of solutions. Accordingly, a
token-based bilateral negotiation protocol and two negotiation strategies are
presented. The experimental results over four different settings of MAPF prob-
lem showed that the proposed approach could find conflict-free path solutions
albeit suboptimally, especially when the search space is large and high-density,
whereas Explicit Estimation Conflict-Based Search (EECBS) struggles to find
optimal solutions. Besides, deploying a sophisticated negotiation strategy that
utilizes information about local density for generating alternative paths can
yield remarkably better solution performance in this negotiation framework.

Keywords Multi-Agent Path Finding, Negotiation, Decentralized Coordina-
tion

1 Introduction

Technological advancements in the last decades have enabled autonomous
robots and vehicles to carry out various tasks, such as surveillance and trans-
portation. They may need to navigate from one location to another to achieve
their goal. Imagine an environment where hundreds of autonomous robots aim
to reach specific locations. Such an environment requires a coordination mech-
anism to avoid some potential collisions. This problem, allocating conflict-free
paths to agents to navigate safely in an environment, is well-addressed in the
field of Multi-Agent Systems and known as Multi-Agent Path Finding (MAPF)
problem (26; 29). Many studies tackle this problem; some propose centralized
solutions while others focus on decentralized solutions (18; 28).
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Centralized solutions rely on full access to all relevant information regard-
ing the agents and properties of the given environment so that a global solution
can be derived. In contrast, decentralized solutions decouple the problem into
local chunks and address the conflicts locally (11). Without any time con-
straints, centralized approaches can find optimal solutions if there exist. How-
ever, the performance of centralized solution approaches can suffer in high-
density and complex environments (9; 21; 27). Besides, complete information
may not always be available due to the limitation of communication, sensors,
or privacy issues. Decentralized approaches can deal with uncertainty and scal-
ability issues and produce admissible solutions. However, they may overlook a
potential optimal solution and end up with sub-optimal solutions.

Accordingly, this paper introduces a negotiation-based decentralized con-
flict resolution approach to MAPF in which agents autonomously negotiate
with each other to refine their paths to avoid possible collisions. One of the
main challenges is dealing with the uncertainty about the environment due
to the limited capacity of the sensors, communication, or some privacy con-
cerns. Most real-world applications are partially observable, where the agents
can perceive some relevant aspects of the environment. For instance, a robot
may not perceive all objects far from its current location. Light detection and
range-finding sensors can detect up to a certain distance. Similarly, wireless
communication systems also have limited communication capabilities. Agents
may not exchange information with each other if they are out of a communi-
cation range. Besides, complete information is not always available due to the
characteristics of the environment. For example, drivers in traffic do not know
where other drivers are going. Furthermore, agents may be reluctant to share
all information due to their privacy. For instance, they may not be willing to
reveal their destination.

In the proposed approach, agents share their partial path information with
only relevant agents close to them. If they detect any conflict on their partial
path, they start a bilateral negotiation to allocate required locations for spe-
cific time steps. This study introduces a variant of alternating offers protocol
enriched with token exchanges to govern this negotiation. By enforcing the
usage of tokens, the protocol leads agents to act collaboratively and search for
alternative optimal or sub-optimal paths to avoid conflict. Two negotiation
strategies are presented in line with the protocol: Path-Aware and Heatmap.
While Path-Aware negotiation strategy focuses on the agent’s information on
its paths and makes bids considering the length of its final path, the Heatmap
strategy utilizes other agents’ available path information in its field of view to
avoid potential conflicts by making bids.

There are a few attempts to solve MAPF problem considering a negotiation-
based approach (14; 15; 22; 23). Either they require sharing complete path
information with others, consider one-step decisions such as who will move in
a certain direction at the time of conflict, or aim to resolve the conflict in one
shot (i.e., collaborate or reject). A detailed analysis of the proposed approach
is also made in the following sections. In contrast, our approach aims to reduce
the complexity of the problem by resolving the conflicts in sub-path plans iter-
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atively instead of the entire path plans, thereby respecting the agents’ privacy
to some extent.

We evaluate the proposed approach in various settings, considering agents’
ability to wait or disappear at their final destinations. We also examine the im-
pact of three types of commitments on the agreed paths regarding the success
rate and solution quality. Furthermore, we define a metric called information

sharing rates to discuss the trade-off between privacy and solution performance
for MAPF problems. Our experimental results show that our decentralized ap-
proaches can provide higher success rates in high-density scenarios (e.g., when
the number of agents is 60 or 80) compared to the state-of-the-art central-
ized approach, namely EECBS. Although its variant, called EECBS with 0.1
suboptimality, could achieve a better solution rate and quality than the pro-
posed approaches, our approach can achieve a better trade-off between privacy
and performance. It is worth mentioning that centralized approaches entirely
ignore the agents’ privacy, whereas our approach prioritizes agents’ privacy.
Besides, we compared the performance of the proposed negotiation strategies
empirically. Based on our experimental results, Heatmap agent performs bet-
ter than Path-Aware agent in terms of success rate and information sharing
rate across all settings. To sum up, the main contribution of this study is
fourfold as follows:

– Introducing a novel negotiation strategy called Heatmap, which generates
offers by avoiding dense areas to resolve the conflicts in MAPF problems,

– Presenting different commitment types and analyzing the performance of
the proposed approaches in terms of various metrics,

– Studying the effect of field of view size and different problem settings where
agents can take a wait action and/or disappear when they reach their
destinations, and

– Investigating the trade-off between success rate and privacy empirically
by examining information sharing rate and success rate of centralized and
decentralized solution approaches.

The rest of the paper is organized as follows. Section 2 presents the re-
lated work on decentralized approaches for MAPF problems. While Section
3 describes the problem addressed in this paper, while Section 4 lays out the
proposed negotiation approach. Our experimental setup and results are pre-
sented in section 5. Finally, this paper’s main contributions and planned future
work are discussed in Section 6.

2 Related Work

Conflict resolution approaches for MAPF problems can be classified according
to the centralization of solution mechanisms and cooperation of agents. Cen-
tralized solution approaches path-finding of cooperative agents provide opti-
mal plans (12). Suppose a trusted center with the information of all agents
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moving in a known environment or the ability to operate all of them is unavail-
able. In that case, negotiation can be used for a conflict resolution mechanism
(1; 13; 23; 22; 30; 14). One negotiation approach to allocating resources to
multiple parties is Combinatorial Auction (CA). To resolve conflicts between
self-interested agents, Amir et al. reduce the MAPF problem to CA and imple-
ments IBundle (20), an iterative CA algorithm (1). One crucial factor for the
effectiveness of CA algorithms is the trustworthiness of self-interested agents
about their utilization. Considering this issue, Amir et al. propose Vickrey-
Clarke-Groves (VCG) auction for MAPF, a strategy-proof auction mechanism
for manipulation attempts by the agents (1). In this IBundle auction, the
auctioneer is exposed to a computational burden as agents submit their all-
desirable bundles, which requires impractical auction time. Addressing this
limitation of IBundle, the auction mechanism proposed by Gautier et al. can
provide a feasible allocation more likely by allowing agents to submit a limited
number of bundles, and so terminates in less time (13). Compared to these
CA-based conflict resolutions for MAPF, our solution is free of trustworthiness
and computational load concerns as it applies bilateral negotiation to resolve
each conflict.

Critical challenges of addressing the MAPF problem within the decen-
tralized method can be summarized as establishing a solution framework for
agents to use while interacting with the environment, defining an interaction
protocol between agents, and designing agents that can reach a solution. Pur-
win et al. propose a decentralized framework where cooperative agents allocate
portions of the environment in which they can move (23). Using these frame-
works, agents send information to others via a network and keep information
about all. Here, agents who collide update their trajectories with a pairwise
agreement based on a priority rule. Similarly, agents broadcast information in
our framework while seeking a conflict-free path, resolving conflicts bilaterally.
However, here revealed information is local and only achievable by agents in
the broadcast range. The work of Pritchett et al. defines a bilateral negotiation
structure to prevent collisions in air traffic (22). Each round of the negotia-
tion session offers cost increases until an agreement is reached. This offering
mechanism forces agents to concede over time. In contrast, Token-based Al-
ternating Offers Protocol (TAOP) that we use in our study does not expose
a catalyst to reduce the number of offers. It is left open to be addressed by
agent strategy designs. Another bilateral negotiation approach for air traffic
is proposed for the pre-flight planning of unmanned air vehicles (UAVs) (14).
In this approach, agents bargain to undertake the cost of replanning to fix
some of the path conflicts with counterparts in the negotiation. While this ap-
proach resolves path conflicts in pre-flight planning among all UAVs, our study
addresses the real-time resolution of the MAPF problem. Besides, our negoti-
ation approach depends on revealing sub-paths in the bilateral negotiations to
resolve local conflicts so that the privacy of the agents’ paths can be preserved
better. Conversely, full-path information is revealed in the negotiation schema
proposed by Ho et al..
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Unlike bilateral conflict resolution approaches, Sujit et al. focuses on solv-
ing a task allocation problem in their work, using a multilateral negotiation
structure (30). Besides, in their work, agents utilize the presented token to
determine whose offer to accept in a deadlock situation that might happen, in
which the agent with the least number of tokens is selected. Whereas in our
framework, token usage is dedicated to penalizing repeated offers. Inotsume et
al. demonstrates a bilateral negotiation-based approach to MAPF (15). In this
approach, agents submit their desired paths to an area manager before mov-
ing their initial positions. The area manager is responsible for keeping control
of a path reservation table and responses the path requests by agents based
on this table to prevent any intersecting paths. The requests are accepted
on a first-come, first-serve basis. Agents can request already reserved areas
from corresponding agents by offering some tokens. Using a path reservation
system deviates from the decentralized MAPF approach. In our framework,
agents aim to minimize path costs and maximize tokens. In contrast, our solu-
tion uses tokens as an instrument to manage the negotiation behavior of any
agent designed to reach an agreement.

MAPF problem requires all of the agents to reach their destination. There-
fore, they must behave in a way that complies with the social welfare to some
extent because allowing agents to act selfishly usually leads to a Nash Equi-
librium (25). To motivate self-interested agents in a network to behave in a
socially desirable way, taxation is a classical approach to diminish congestion
in the network (8). Considering the MAPF problem for self-interested agents,
Bnaya et al. propose Iterative Taxing Framework to detect where, when, and
how much additional cost is imposed on agents to change their paths so that
they are discouraged from using paths that would collide with others (5). Their
results show a substantial total cost decrease compared to a solution scheme
depending on a selfish replanning procedure. However, they do not bench-
mark with optimal solution cost. Thus, the efficiency of the proposed frame-
work needs to be investigated further. Aiming the system efficiency, Ramos
et al. introduce a toll-based multi-agent reinforcement learning approach to
minimize total congestion and can achieve system-efficient results (19). In this
study, tolls are used to divert drivers from congested routes. Similar to these
two studies, our proposed system for MAPF aims to urge agents to prefer
alternative optimal paths or individual sub-optimal paths when they face a
density of other agents in their next sub-paths requiring more tokens to re-
solve conflicts.

Besides providing a scalable multi-agent planning framework for path-
finding problems among self-interested agents, we also address the privacy
aspect in the multi-agent planning domain with our study. In the privacy-
concerned planning concept, agents have the task of searching and are enforced
to preserve the disclosure of sensitive data while resolving conflicts of inter-
est. MA-STRIPS (7) model provides a privacy-preserving planning scheme to
control what part of the information is shared with all agents. However, this
planning paradigm reveals information among all agents instead of transmit-
ting data only between the agents subject to a conflict of interest. Bonisoli et
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al. provides a generalized form of MA-STRIPS by establishing pairwise pri-
vacy among agents (6). In their setting, agents can specify a subset of agents
intended to share information. Their approach is well proper for multi-agent
problems, including individual interest protection. Similarly, in our situation,
agents need to collaborate with other agents in case of future conflicts, al-
though they are all self-interested. Therefore, path-seeker agents have to reveal
local information. Our decentralized MAPF framework follows a geographical
manner to condition what part of the information is shared with which agents.
Such local information revealed with close agents is needed because the ad-
dressed problem requires no collision and proactive responses (i.e., replanning)
by the stakeholder agents in a reasonable time before potential path conflicts.

3 Problem Definition

MAPF is the problem of assigning conflict-free paths to agents from their
respective starting locations to their destinations (29). There are k agents A

= { A1, A2, ..., Ak } navigating in an undirected graph G = (V,E) where
starting and destination location for each agent Ai are denoted by si ∈ V and
gi ∈ V , respectively. A path is a sequence of states πi = [(si, 0), · · · , (gi, T )],
where a state is a tuple of vertex v ∈ V and time step t ∈ {0, · · · , T}, and
T is the time step when Ai reaches to gi. The cost of a path is calculated as
|π| − 1. At any time step, agents cannot be located in the same vertex – πt

i

6= πt
j ∀ i 6= j and traverse the same edge πt

i =πt+1

j ∧ πt+1

i =πt
j , ∀i 6= j (i.e.,

swapping conflict).

Agents are located in a M × M grid-like environment where each cell
corresponds to a vertex as illustrated in Figure 1a. Initially, each agent has
an optimal path to follow to reach their destination, shown by dashed lines
in the grid. There are three agents, A, B, and C, whose planned paths are
colored in their respective colors (i.e., red, blue, and green). All agents can
only move to their vertical and horizontal adjacent neighboring cells (i.e.,
cardinal directions) or wait. The example includes a conflict between Agent
A and Agent C at t = 2 in cell (3, 3). They need to resolve this conflict to
achieve their goals. In the classical MAPF problems, the aim of the system is
to minimize the sum of individual costs

∑k

i=1
|πi| where the individual cost of

each agent i corresponds to their path length denoted by |πi|. Note that each
individual aims to minimize their cost in decentralized MAPF problems.

This work examines four different MAPF problem settings. In disappear-

at-target MAPF problem, agents can disappear from the environment when
they reach their destinations. In contrast, agents stay at the destination in
stay-at-target MAPF problem (i.e., πt

i 6= πt+1

i whereas πt
i 6= gi.). In another

problem setting, agents can either wait or move. Accordingly, this work studies
four different variants of MAPF problem as follows:

– Setting-1: Agents cannot wait until reaching their destinations. They stay
at their target destinations and act as obstacles to other agents.
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– Setting-2: Agents can wait at any time step until reaching their destina-
tions. They stay at their target destinations and act as an obstacle for
other agents.

– Setting-3: Agents cannot wait at any time step and disappear at their
target destinations.

– Setting-4: Agents can wait at any time step until reaching their destination
and disappear at their target destinations.

(a) (b)

Fig. 1: Example Environment & Field of View Size = 3

4 Decentralized MAPF Framework Based on Automated
Negotiation

In the proposed framework, agents are located in a grid as shown in Figure 1b.
Initially, each agent knows only their starting location, destination, and a path
plan to reach their destination. Those planned paths are shown as the colored
dot lines in the grid for each agent. We adopt the concept of field of view

(FoV) to simulate the partially observable environment mentioned above (10).
The framework enables agents to access a limited portion of other agents’
planned paths within a certain proximity and share their own. In other words,
an agent’s FoV determines the scope of its communication and perception
capacity. An agent can only observe and communicate with other agents within
its FoV. That is described as a square at size 2d + 1, where d is the distance
of agent location from the view boundary. For instance, when d equals 1, a
red rectangle for Agent A shows FoV boundary. In such a case, Agent A can
receive/send information from/to only agent C located in its FoV and vice
versa. However, in the given snapshot, Agent B cannot communicate with
other agents at that time.

In this framework, each agent broadcasts its planned subpath. Agents can
determine to what extent the path will be shared with other agents in FoV.
In our experiments, agents share their current subpath with a length of 2d. If
any conflict is detected by one of the agents, they can engage in a negotiation
session. For example, when d equals 1, agents will share their current subpath
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with a length of 2 (i.e., its next two moves) with the agents located in the
scope of their FoV. Agent A broadcasts its current subpath as Broadcast :
[πt=1

A = (3, 2), πt=2
A = (3, 3)] while Agent C shared its own as Broadcast :

[πt=1
C = (2, 3), πt=2

C = (3, 3)]. Since agents would detect a conflict in the vertex
(3, 3) at t=2, Agent A and Agent C start negotiating the allocation of vertices
on their path.

When an agent detects a conflict with more than one agent, which nego-
tiation to be held first is determined on first come, first serve fashion, and If
a conflict with multiple agents is detected simultaneously, the agent to nego-
tiate with is selected arbitrarily. For example, if d is 2, Agent B and Agent
C will share their subpaths with a length of 4 with Agent A. Agent A may
first negotiate with Agent B if Agent B’s message has been received before
Agent C’s one. Afterward, it can encounter a bilateral negotiation with Agent
C. After carrying out any successful negotiation, agents will update their path
accordingly. Several negotiation sessions might be held until resolving current
conflicts. If agents do not detect a conflict in their FoV, agents move to the
next location in their path. Once an agent reaches its target destination, it
will no longer engage in a negotiation. The negotiation is carried out according
to the proposed token-based negotiation protocol. The details of this protocol
and the proposed bidding strategies mainly designed for this protocol to tackle
the MAPF problem are explained in the following sections.

The proposed framework requires agents to negotiate to resolve conflicts in
their paths. The conflict may occur between two or multiple agents at a given
time. When it happens among more than two agents, we can formulate it as
multiple bilateral negotiations. As it may be harder to find a joint agreement,
especially when the number of participants is high (2), the proposed approach
aims to solve the conflicts in multiple consecutive bilateral negotiations. For
simplicity, agents perform their bilateral negotiations consecutively. That is, a
new negotiation can start after completing the previous one.

In the proposed approach, when there is a conflict in two agents’ sub-
paths, agents negotiate to allocate the conflicted states for certain time steps.
According to the example illustrated in Figure 1b, Agent A may claim to use
the vertices (3, 2) at t = 1 and (3, 3) at t = 2 while Agent C may claim to
use the vertices (2, 3) at t = 1 and (3, 3) at t = 2. Depending on how the
negotiation proceeds, they may concede over time and change their request
on vertex allocations to reach an agreement. If agents reach an agreement,
they are supposed to obey the allocation for the other party. Agents are free
to change their path as long as their current path allocation does not violate
the agreed vertex allocation for the other party. For example, when Agent C
accepts Agent A’s vertex allocation for time steps t = 1 and t = 2, Agent C

confirms that it will not occupy those vertices allocated by Agent A for the
agreed time steps.

The interaction between agents needs to be governed by a negotiation pro-
tocol. In automated negotiation, agents mostly follow the Stacked Alternating
Offers Protocol (3), in which they exchange offers in a turn-taking fashion
until reaching a predefined deadline. This protocol does not force the agents
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to come up with an agreement. If both agents are selfish, they may fail the ne-
gotiation. However, having a consensus is necessary to find conflict-free paths.
Therefore, agents preferably follow a protocol leading them to reach an agree-
ment. Accordingly, we introduce a token-based negotiation protocol, namely
Token-based Alternating Offers Protocol (TAOP) inspired by Monotonic Con-
cession Protocol (MCP) (24) and Unmediated Single Text Protocol (USTP)
(16).

Fig. 2: Example Interaction between Negotiating Agents

According to Monotonic Concession Protocol, agents make simultaneous
offers to either stick to their previous offer or make a concession. The negotia-
tion ends without consensus (i.e., failure) if both parties stick to their previous
offers. Otherwise, agents continue negotiation until reaching an agreement or
fail the negotiation. This protocol leads agents to complete the negotiation
without setting a predefined deadline. However, there is a risk of ending up
with failure. In Unmediated Single Text Protocol, agents interchangeably be-
come a proposer or voters during the negotiation. Initially, some tokens are
given to each agent, and agents can use those tokens to override others’ re-
jected votes. One agent starts with a random offer, and the other agent votes
to accept or reject it. It is considered the most recently accepted bid if the
other agent accepts. This interaction is repeated multiple times, and the most
recently accepted bid is updated over time. At the end of the negotiation, the
most recently accepted bid is considered the agreement. Here, the tokens in-
centivize truthful voting of agents to not manipulate the system by rejecting
all offers. Since this protocol is particularly designed for large-scale negotiation
problems, the generated bids are variants of an initial random offer, not di-
rectly applicable to our problem. On the other hand, the token idea can force
the agents to concede over time in a fairway.

The proposed token-based alternating offers protocol is a variant of al-
ternating offers protocol enriched with token exchanges. One of the agents
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initiates the negotiation with an offer. The receiving party can accept this of-
fer, make a counteroffer, or end the negotiation without agreement. The main
difference is that agents cannot repeat their previous offers unless they pay
for them. The protocol assumes that each agent owns a predefined number
of tokens, T . Those tokens enable an agent to make one of its previous offers
during that negotiation. Unlike Monotonic Concession Protocol, the negoti-
ation does not fail if both agents stick to their current offer by exchanging
tokens. The essential requirement for agents is to make offers that are not pre-
viously proposed during the negotiation or pay tokens to repeat an offer. In
addition to the given offer, agents send an acknowledgment message specifying
the number of tokens to be used to repeat an offer previously made by the
same agent. The general flow of the proposed protocol is given below:

1. One of the agents makes an offer specifying its request to allocate some
vertices for specific time steps and sends an acknowledgment message re-
garding using its token in the current negotiation. Initially, the usage of
tokens is set to zero.

2. The receiving agent can take one of the following actions:
– ends the negotiation without any consensus.
– accepts the received offer and complete the negotiation successfully.
– makes an offer specifying the vertices allocation for itself that has not

been offered by that agent yet and sends the acknowledgment denoting
the accumulated usage of its tokens.

– can repeat one of its previous offers, increase the usage of its tokens by
one, and send the token acknowledgment message.

3. If the agent accepts or ends the negotiation, the negotiation is finished. The
accepting agent receives tokens amounting to the calculated token usage
difference from its opponent, min(Topp − Tself , 0) where Topp and Tself
denote the total number of tokens used by the opponent and the accepting
agent during the entire negotiation respectively. If the accepting agents
spend more tokens than their opponent, it does not receive any tokens.
Otherwise, the receiving agent can take any action mentioned in Step 2.

Considering the scenario given in Figure 1b, an example negotiation trace
between Agent A and C is illustrated in Figure 2. Agent A initiates the nego-
tiation with its offer PA1 requesting to claim the vertices (3, 2) for t = 1 and
(3, 3) for t = 2. Agent C does not accept this offer and makes its offer specify-
ing its allocation, such as (2, 3) and (2, 4). Since Agent A insists on its previous
offer, it increases its token usage by one. As the example shows, agents send
an acknowledgment message and offer each turn. Agent C accepts Agent A’s
offer in the fourth round. It confirms that Agent C will not move to (3, 2)t=1

and (3, 3)t=2. In return, Agent A will pay 2 tokens (TA-TC). It is worth noting
that the token exchange is performed at the end of the negotiation, depending
on who accepts the offer. The agreement is not committed if an agent needs
to pay tokens but has insufficient tokens (i.e., negotiation fails).
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4.1 Commitments of Agreements

After reaching an agreement by following the proposed negotiation protocol
above, agents may adhere to or retract from the agreed path allocation de-
pending on their role. If the agent pays a token and convinces another party to
accept its offer, it is free to change its remaining path later on. Otherwise, the
agent accepting the offer should determine another subpath that does not con-
flict with the agreed allocation (i.e., the tuple of opponent agent ID, timestep,
and location) and broadcast its new subpath within FoV. However, that agent
may end up with suboptimal or unsolvable positions at any time step after the
agreement time t′. For such situations, we define different commitment types
for agents as follows:

– Standard Commitment (SC): The agent agreed on the offer and can-
not enter the subpath allocated to the other agent according to the agree-
ment (10).

– Zero Commitment (ZC): At any time step after t′, the agent can de-
commit the current agreement when it observes new conflicts.

– Dynamic Commitment (DC): At the end of the negotiation, the agent
who accepted the opponent’s offer should obey the agreed subpath until
the conflicted state. Afterward, it can break the commitment if deemed
necessary as a result of new observations at any moment after t′.

To illustrate how these commitment types work, consider the example given
in Figure 1b, where the FoV size is three. Assume that Agent C gives the path
advantage – ((3,3) position is allocated for Agent A in the grid to Agent A at
the end of the negotiation at time step t.

– While ZC is utilized, Agent C can again move ahead of the Agent A path
in t+ 1 if necessary.

– While SC is utilized, when Agent C detects that there are two different
conflicts with both Agent A and B and agrees to give both full path superi-
ority, C cannot enter the paths where they are placed behind the conflicted
positions. Since C already gives all usage rights of the paths in t, even if C
needs to break its commitment to reach its destination.

– While DC is utilized, Agent C cannot go from Agent A’s path until it passes
a conflicted point (e.g., (3,3)); it has to stick two steps to its commitment
until t+2. However, suppose there is future negotiation with Agent B at
t+s for a conflicted location at t+s+1. In that case, Agent C should stick
only one step to its commitment to Agent B. Agent C has a different
commitment deadline for each negotiation according to its conflicted places
in dynamic commitment.

For these effects, the commitment type can be a distinguishing feature for
decentralized MAPF problems, especially in scenarios where the FoV is large in
dense environments. Hence, this paper analyzed the effects of the commitment
type as an independent variable. Due to the nature of different commitment
types, agents can increase uncertain behaviors in the environment according
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to the changes in their observations. These behaviors cause to increase in the
number of negotiations for each scenario. In other respects, these behaviors
can increase agents’ individual utility and the successful completion rate of
each scenario since they will increase agents’ resiliency and adaptation skills.
Section 5.4 will further examine the impact of these commitment differences
across all other configuration variables.

4.2 Proposed Negotiation Strategies

We introduce two bidding strategies, namely Path-Aware (10) and Heatmap.
Note that the agents are called by the name of the bidding strategy they
adopt. While Path-Aware agent considers its available path and token informa-
tion, Heatmap agent aims to reduce potential conflicts and prefers low-density
routes, as explained below.

4.2.1 Path-Aware Negotiation Strategy

Existing negotiation strategies focus on only which offer to make at a given
time and when to accept a given offer (4). Therefore, there is a need to design
a new strategy considering token exchanges. Hereby, we propose a negotiation
strategy, which we call Path-aware agent (10), determining when to repeat
an offer or generate a new offer. It aims to utilize the information available
to determine when to insist on its current path. It is worth noting that each
agent generates possible paths leading them to its destination by using the A∗

Algorithm by considering the non-conflicting paths with those of other agents
in its FoV. Those possible paths constitute the agent’s bid space. Afterward,
they sort those paths in descending order of their cost.

Algorithm 1 describes how an agent negotiates according to Path-Aware
agent. At the beginning of the negotiation, the current path in FoV (Pc) is the
relevant part of the optimal path (i.e., the shortest path to its destination). It
corresponds to the first offer in the negotiation. When the agent receives an
offer from its opponents, it checks whether it is possible to generate a path
of equal length or shorter than its current path to the destination (Line 1).
If so, it accepts its opponent’s offer (Line 2). Note that the path generation
function takes the opponent’s offer, Oopp, as a constraint while generating its
best possible path to the destination. If the best possible route, which is in line
with the opponent’s bid, is better than or equal to the current path, then the
agent accepts the opponent’s offer. If the agent’s remaining tokens are greater
than the length of the remaining path to the destination (Line 4), it decides to
repeat its previous offer. It updates its remaining tokens accordingly (Line 5).
Recall that for each repetition, the agent needs to use one token. Otherwise,
it concedes and sets the next possible best path from the sorted path space
PSpace as its current path in its FoV (Line 7). Accordingly, the agent offers
its current path in FoV Pc (Line 9). Note that agents must concede if they do
not have any tokens left.
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Algorithm 1: Negotiation Strategy of Path-Aware Agent

Data:

Tr, Pr : Agent’s remaining tokens & path to destination
Pc : Current path in FoV
PSpace: Sorted path space
Oopp : Opponent offer

1 if |Pc| ≥ |generatePath(Oopp)| then
2 accept()
3 else

4 if Tr > |Pr| then
5 Tr −−
6 else

7 Pc ← PSpace.next()
8 end

9 offer(Pc)

10 end

4.2.2 Heatmap Negotiation Strategy

The Path-Aware agent focuses on the agent’s remaining path length and the
number of tokens. The density in the observable environment is neglected dur-
ing the bidding process. Thus, the agreed paths may lead to further conflicts.
Heatmap bidding strategy incorporates this environmental information into
the evaluation of bids. This strategy uses the available data in FoV to gener-
ate a heat map of the terrain around the agent and detects high-density areas.
Consequently, it avoids generating a path through dense regions as the cars
avoid potential traffic jams by preferring the low-density routes in the traffic.
In other words, by analyzing the received path information from other agents,
the agent aims to foresee moving to which region of the environment causes
path conflicts to be less likely. The generated heatmap is built based on the
broadcasted information of other agents within Fov. It considers each heatmap
while calculating the estimated cost of any path. Figure 3 shows an example
of a heatmap created for an agent in the middle of the grid. When the location
information of an agent is detected by other agents, they compute a heatmap
centered at the location of the detected agent, as seen in Figure 3a. Here, the
values are normalized concerning FoV (see Figure 3b).

To better understand how the agent uses a heatmap in its bidding strategy,
we illustrate a toy example depicted in Figure 4. In this example, Agent A

and Agent B start negotiation because they detect a swapping conflict on
their paths. Therefore, when Agent A estimates the cost of each possible path,
it considers only the heatmap of Agent C. As seen from Figure 4, Agent A

generates the heatmap of Agent C for t=1 and t=2 based on the broadcasted
path information by Agent C. Let us assume it will calculate the estimated
cost of its initial path, (2, 2), (2, 3), (3, 3). At t=1, it is supposed to be at (2, 3),
and the value of this cell is 0.33, while at t=2 it will be (3, 3), and its heatmap
value is also 0.33 according to the heatmap of the Agent C. The path cost
would be estimated as (0.66 =0.33+0.33).
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(a) Real Heat Values (b) Normalized Heat Values

Fig. 3: Heat Map Generated by an Agent

Fig. 4: Heatmap of Agent C According to Agent A

When multiple agents are present in the heatmap, the values of the cells are
added up, which is illustrated in Figure 5 depicting a portion of the heatmap
generated by Agent A at time step t for its negotiation session with Agent D.
It is assumed that Agent A can listen to broadcasts of Agent B, C, and D,
and Agent A is engaged in a negotiation session with Agent D. Note that the
heat values of the opponent agent are not considered during the negotiation.
Consequently, heat values generated by Agent D are ignored. However, the
paths of Agent B and C are assumed to be steady for the duration of the
negotiation. Therefore, their broadcasted information is used to generate a
heatmap, which has a portion of it seen in the figure.

Heatmap agent follows almost the same strategy as the Path-Aware strat-
egy but takes the potential future conflicts into account; therefore, its cost
estimation differs from Path-Aware agent. Unlike Path-Aware agent, which
uses the actual cost of the paths, Heatmap agent estimates the cost of the
bids (i.e., paths) according to Algorithm 2. The overall cost is the sum of the
estimated cost of each cell in the given path. That is, the cumulative cost is
estimated by considering the relevant cell value on the Heatmap of each neigh-



Decentralized Multi-Agent Path Finding Framework and Strategies 15

Fig. 5: Heat Generated by Agents B and C for Agent A

bor agent other than the current opponent agent. Line 2 iterates through the
points in the given path whose cost is estimated, while Line 3 iterates through
the heatmaps of the neighbor agents except for the opponent. The total cost
is increased by each relevant cell value of the heatmaps (Line 4). After calcu-
lating the estimated cost of each possible bid, Heatmap agent sorts them in
descending order and employs the approach explained in Algorithm 1.

Algorithm 2: Path Cost Estimation from Heatmap

Data:

H
j
T

: Heatmap for Agent j at a given time T

Nc: Neighbor agents excluding the opponent in FoV
Pc : A given path whose cost will be estimated
Output:

EC : Estimated cost of a given path, Pc

1 EC ← 0
2 for i← 1 to n ∈ |Pc| do
3 foreach j ∈ Nc do

4 EC ← EC +H
j
t+i.get(P

i
c )

5 end

6 end

7 return EC

Throughout its life cycle in the environment, an agent can continuously ob-
serve its environment. By observing the changes in their environments, agents
can deduce congestion in an area and behave to avoid dense regions. One way
to introduce congestion avoidance while designing the agent is to introduce
a system to help the agent avoid bids that would direct it toward congested
regions. In this strategy, the agent utilizes the information available in FoV
to generate a simple heatmap to perceive the crowd and avoid making bids
leading to those regions. The generated heatmap will allow the agent to differ-
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entiate between offers by weighting bids that lead into crowded regions heavier
than those that do not.

5 Evaluation

To evaluate the proposed negotiation approaches, we simulate a set of scenar-
ios for the four introduced MAPF settings. We report the empirical results
in terms of several metrics: solution rate, solution quality, number of negotia-
tions, and information sharing rate. Considering these metrics, we analyze the
effect of negotiation strategy, the field of view (FoV) size, and the commit-
ment types on the system behavior. Besides, we compare the performance of
our decentralized MAPF framework with the centralized MAPF approach. In
the following sections, we first introduce experimental setting and evaluation
metrics. Then, we present and analyze the results.

5.1 Experimental Setting

We deploy the state-of-the-art optimal search algorithm for centralized MAPF,
Conflict-based Search (CBS) citeSharon2012, to examine the performance of
our decentralized MAPF approach. CBS is a two-level search algorithm in
which high-level search resolves path conflicts by generating a set of constraints
for conflicted agents while a single path under these constraints is generated
by an optimal shortest-path algorithm, like A*, in the low-level search. Here,
a constraint is a tuple (i, v, t) where agent i is prohibited from occupying
vertex v at time step t. At the high-level search, a binary tree of constraint
nodes is operated to resolve conflicts between paths where each node consists
of paths and a set of constraints for each agent. When a conflict between two
paths is detected, two child nodes are generated by constraining respective
agents. In each child node, one agent in the conflict is prohibited from using a
conflicted vertex or edge by adding a constraint, and a new path is searched
for that agent at the low level under the new constraint set. CBS was used for
benchmarking in our previous work (10), demonstrating the limited scalability
of CBS.

In this work, our experiments utilize the most enhanced version of CBS, Ex-
plicit Estimation Conflict-Based Search (EECBS) (17). EECBS is a bounded
sub-optimal MAPF algorithm that guarantees the solution cost by an opti-
mality factor of w. It applies different node selection rules than CBS at low
and high-level searches. Instead of a best-first search in A* at the low level,
it follows a focal search in which solutions in the focal list have a cost value
at most w.f where f is the lower bound to the optimal solution cost found
during the search. EECBS manages its high-level search to reach a subopti-
mal solution faster by utilizing inadmissible information about potential cost
increments (31). We run optimal EECBS and EECBS-1.1, which has the up-
per bound of 1.1 for suboptimality. We set the time limit to five minutes for
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EECBS and one minute for EECBS-1.1 per scenario. For optimality evalu-
ation, we only consider the scenarios in which the optimal solution is found
with EECBS. Each setting of MAPF problem (i.e., settings 1–4) experimented
with 100 different scenarios in a 16× 16 grid without obstacles for 20, 40, 60,
and 80-agent scenarios in standard commitment protocol. All scenarios were
generated with randomly distributed initial path lengths between 4 and 24
using MAPF benchmark dataset provided by (28). Each combination of the
aforementioned configurations was repeated for FoV sizes 5, 7, and 9 (i.e.,
FoV5, FoV7, and FoV9). For the robustness of the evaluation, these runs were
repeated five times, considering randomness in the agent’s suboptimal bid se-
lection and bilateral partner selection. All experiments were conducted on 12
computers with an 8-Core 3.2 GHz processor and 32 GB RAM.

We evaluate the performance of the proposed decentralized approaches in
each problem setting by comparing their performance with that of EECBS
(i.e., centralized approach) in terms of several metrics. The first metric we
use is the solution rate, which denotes the ratio of the number of conflict-free
path solutions for all agents over a given MAPF configuration. In addition
to solution rate, solution quality is another criterion for benchmarking sub-
optimal solvers, typically defined as an optimality gap. For MAPF problem,
optimality gap describes the rate of the path cost difference between the solu-
tions obtained by the given approach and an optimal solver. It is formulated in
Equation 1 where |πsolution| is the average of the final path lengths of agents
provided by the proposed approach and |π∗

solution| is the average of optimal
path lengths provided by EECBS. Since proposed decentralized approaches
could yield solutions for some scenarios that EECBS cannot solve, we use
normalized path difference metric to compare the performance of those decen-
tralized approaches. It is defined in Equation 2 where N denotes the number of
scenarios, |πDsolution| is the average of the final path lengths of agents provided
by the proposed approach on the ith scenario and |π∗

Dsolution| is the average
length of the shortest paths provided by available decentralized approaches.

Optimality Gap =
|πsolution| − |π∗

solution|

|π∗

solution|
(1)

Normalized Path Difference =
1

N
∗

N∑

i=1

|πi
Dsolution| − |π∗i

Dsolution|

|π∗i
Dsolution|

(2)

Moreover, we evaluate the proposed decentralized approaches considering
the average number of negotiations and privacy of agents’ paths. We define
information sharing rate (IS) to consider what extent of an agent’s final path
is shared with other k-1 agents. Equation 3 defines the information sharing
rate of agent j by averaging the rate of agent j’s shared path with other agents
where π

j
solution and π

j→i
broadcasted denote the final path of agent j and the part

of that path shared with other agents during broadcasting, respectively. For
evaluating a given scenario, the information sharing rate is averaged over all
agents in that scenario.
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ISj =
1

k − 1
∗

k−1∑

i=1

|πj→i
broadcasted ∩ π

j
solution|

|πj
solution|

, i 6= j (3)

For all metrics mentioned here, we only consider the results of the runs
where each strategy could find a solution for the given scenario to evaluate
the strategies fairly. The results used for each metric calculation are averaged
over methods that all compared approaches could solve.

In the following sections, we first compare proposed decentralized ap-
proaches with centralized ones (Section 5.2) and analyze the decentralized
MAPF approaches elaborately (Section 5.3). Afterward, we investigate the
effect of the commitment types (Section 5.4).

5.2 Decentralized versus Centralized MAPF Approaches

To compare the performance of our decentralized approaches with the cen-
tralized MAPF approach, we have run EECBS and its variant EECBS-1.1
to find optimal and suboptimal solutions with an optimality gap of 0.1, re-
spectively, for all scenarios per each set consisting of 100 scenarios. We run
our proposed decentralized approaches with the standard commitment type,
namely Heatmap and Path-Aware. Note that FoV size for those approaches is
set to five1.
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EECBS EECBS-1.1 Heatmap(FoV5) Path-Aware(FoV5)

Setting-1 Setting-2 Setting-3 Setting-4

Number of Agents

Fig. 6: Success Rates by EECBS, EECBS-1.1, Path-Aware, and Heatmap
Agents with FoV(5)

Figure 6 shows the solution rate for EECBS, EECBS-1.1, Path-Aware, and
Heatmap agents with the FoV size of five. It is observed that the decentralized

1 We have tested with varying FoV values and got a higher solution rate on average when
their FoV size is five (FoV5).
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agents can provide higher success rates in high-density scenarios (e.g., when
the number of agents is 60 or 80) compared to EECBS. Recall that EECBS
may not find optimal solutions for some scenarios. On the other hand, when
EECBS is allowed to perform with the suboptimality factor of 0.1, it can
provide solutions for almost all scenarios.

When we investigate the scenarios for which all approaches found a solu-
tion, the success rates of EECBS, Heatmap, and Path-Aware approaches are
given in each cell in Table 1 where k denotes the number of agents. It is seen
that when the number of agents is equal to 20, EECBS could find optimal
solutions for all scenarios. However, when the number of agents increases, it
has difficulty producing a solution (see success rates when k=80). In compari-
son to its success rates, decentralized approaches, particularly Heatmap, reach
higher success rates (e.g., 0.16 versus 0.67 for Setting-4)2.

Table 1: The Success Rates by EECBS, Heatmap, and Path-Aware based on
individually solved scenarios, respectively.

k=20 k=40 k=60 k=80

Setting-1 1.0/0.98/0.96 0.93/0.75/0.5 0.14/0.30/0.09 0.00/0.00/0.00
Setting-2 1.0/0.97/0.96 0.91/0.79/0.53 0.08/0.15/0.15 0.00/0.00/0.00
Setting-3 1.0/0.99/0.98 0.99/0.97/0.68 0.66/0.81/0.43 0.21/0.47/0.23
Setting-4 1.0/0.99/0.97 1.0/0.98/0.71 0.62/0.92/0.42 0.16/0.67/0.24

The decentralized approaches perform with 16% optimality gap on aver-
age, whereas EECBC-1.1 produces solutions with 6% average optimality gap
compared to EECBS (Figure 7). Moreover, we can see that extending Path-
Aware agent and developing Heatmap agent has improved the overall solution
rate and slightly decreased the optimality gap in decentralized setup. Since
Heatmap agent is designed to be aware of the environment, these results show
that a more sophisticated agent design can yield better performance in the
proposed negotiation-based MAPF framework.

Lastly, we investigate to what extent the decentralized approaches take
into account privacy. It is worth noting that the centralized approaches may
find better solutions; however, they use global information on all agents’ paths
to resolve conflicts, whereas agents utilize local information to find conflict-
free paths in the proposed decentralized MAPF framework. Figure 8 shows
the average information share rate for Path-Aware and Heatmap agents for
each setting with varying FoV sizes. It is seen that when agents employ the
Heatmap strategy during their negotiation, the information shared with other
agents is significantly lower than that of Path-Aware agents. Since Heatmap
agent employs a density-aware strategy, which avoids crowded areas, it has a
tendency to change its path rapidly.

Moreover, it is observed that the average information sharing rate is higher
when FoV is larger irrespective of the condition, as is expected since a larger

2 Those results are boldfaced.
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Fig. 7: Optimality Gaps by EECBS, EECBS-1.1, Path-Aware, and Heatmap
Agents with FoV(5)

FoV makes agents perceive more neighbor agents. Contrary to expectations,
when the environment becomes denser (i.e., involving a higher number of
agents), the information sharing rate and the number of broadcasted agents
decrease. Our observation is that the percentage of agents encountered in FoV
is increased relatively less than the growth rate of the population (see Fig-
ure 9). Therefore, even though the number of message exchanges is similar in
both settings, as seen in Figure 9, the proportion of its final path is shared
with others relatively less than the case of the Path-aware agents.
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Fig. 8: Average Information Sharing Rate for Each Agent
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Fig. 9: The Ratio of The Average Number of Broadcasted Agents to Total
Number of Agents

Besides, we might expect to see a decrease in the information sharing rate
when dealing with a MAPF problem in the case of the agents disappearing
at their targets (Settings 3 & 4) because they are not obstacles for others
anymore when they reach their destination. However, when we analyzed the
scenarios solved, we noticed that agents mostly solved less conflicting scenarios
in all settings, and agents in settings 3–4 could also solve more complicated
scenarios. Therefore, agents in those settings encountered more agents; thus,
the average information sharing rate is higher in those settings.

5.3 Analysis of Decentralized MAPF Approaches

As discussed before, Heatmap agents are capable of providing solutions in
challenging settings where agents have to take action in each time step and act
as an obstacle for other agents in the system when they reach their destinations
(i.e., standard setting – setting 1). This section examines how the proposed
negotiation approaches handle the same scenarios if we enable agents to wait
at any time (i.e., settings 2–4) and disappear from the environment when they
reach their goals (i.e., settings 3–4). Consequently, we evaluate the performance
of the proposed approaches on the previously generated 16×16 scenarios for
four different settings of MAPF problem as defined in Section 3.

Figure 10 presents the success rates of Heatmap and Path-Aware agents
in each environment density with each FoV size (i.e., FoV = 5, 7, and 9) for
all problem settings. Enabling wait action and the behavior of disappearing
at the destination (Setting 4) has a positive effect on the solution rates. Both
agent types perform much better when disappearing at target, especially for
scenarios consisting of 40, 60, and 80 agents. That may stem from the fact
that the complexity of the problem is reduced since the agents at targets are
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no longer obstacles for others. Another observation is that the performance of
Heatmap agent is affected more positively when the agents are allowed to wait
anytime, especially in the case of the disappearing setting (Setting-3 versus
Setting-4).
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Fig. 10: Success Rates by Heatmap and Path-Aware Agents for Each FoV Size

The solution rate drastically drops when we increase the number of agents
to 80, especially when the agents are allowed to take wait-action to resolve
path conflicts with others. The empty cells in the 16x16 grids significantly
decrease when there are 80 agents. In addition, allowing agents to wait when
they can act as an obstacle for other agents. To sum up, this will lead to more
conflicts among agents, which cannot be straightforwardly resolved. Most of
the cases, agents are stuck and cannot move in any direction – ending up with
a low solution rate.

Regarding the quality of the solutions, Figure 11 shows the average nor-
malized path differences for both agent types in four settings with varying
FoV sizes. For 80-agent scenarios of Settings 1 and 2, average normalized path
differences are missing since the solution rate is equal to zero in these problem
configurations. It is observed that solution quality differences between Path-
aware and Heatmap agents, Heatmap agent is slightly better than Path-aware
while the success rates of Heatmap agent are higher. That shows the superi-
ority of Heatmap agent over Path-aware agent. Heatmap agents can resolve
path-conflicts without sacrificing path length. Heatmap agent can achieve so-
lutions at slightly lower average normalized path differences than Path-Aware
agent overall. This result promotes the design of environment-aware agents
for MAPF problems rather than agent designs only focusing on token con-
sumption. Figure 12 shows the average number of negotiations per agent. In
general, agents have an almost equal number of negotiations in each setting
except when the number of agents is 80. In that case, the higher FoV is, the
higher number of negotiations occur (see setting 4).
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Fig. 11: Average Normalized Path Differences for Heatmap and Path-Aware
Agents for Each FoV Size
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Fig. 12: Average Number of Negotiations for Each Agent Type

5.4 The Effect of Commitment Types

In this section, we provide a focal analysis of the system performance using
the proposed negotiation approach to examine how it evolves in dense en-
vironments; therefore, we consider only 80-agent scenarios for Setting-3 and
Setting-4 MAPF configurations. Recall that agents disappear when they reach
their target in both settings. Agents can take a wait action at any time step
until reaching their destination in Setting 4, whereas they cannot wait in Set-
ting 3. Generally, Heatmap agent has provided better results than Path-aware
agent in many metrics when using the standard commitment protocol. Hence,
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we only focus on Heatmap agent to analyze the effect of the commitment types.
All results throughout the section are provided in the taxonomy of agent con-
figurations, which are the commitment types (SC, ZC, and DC) and the FoV
sizes (5, 7, and 9). We consider the aforementioned performance metrics other
than the optimality gap since EECBS could not provide optimal solutions for
the scenarios involving 80 agents.

Depending on their commitment types, agents may adhere to or retract
from the agreed path allocation from their previous negotiations. While agents
utilizing SC entirely stick to their prior agreements and generate offers that
do not conflict with the previous agreements, agents utilizing ZC can change
their path and conflict with their previous commitments at any time after the
agreement time. In contrast, agents utilizing DC must stick to the agreed allo-
cation until the time step of resolved conflict (i.e., previously conflicted state),
but after that state, the agent is free to change its path. Figure 13 shows the
success rates of Heatmap agent for setting 3 and 4. When we analyze those re-
sults, it is seen that Heatmap agent reaches more solutions in zero commitment
than SC in both settings. In particular, the success rate differences between
zero and standard commitments are %31-%35-%52 in Setting-3 and %18-%18-
%40 in Setting-4 with the respective FoV sizes. In SC, the agents narrow their
search space by sticking to their previous agreements; thus, this situation may
prevent agents from finding an agreement in further negotiations. As a result,
allowing agents to decommit their previous negotiation agreements may in-
crease the chance of reaching their final destination. In addition, the success
rate differences between agents utilizing ZC and DC are minimal (%1-%1-%0
in Setting-3 and %6-%1-%3 in Setting-4 with the respective FoV sizes). It is
worth noting that the success rates of agents utilizing ZC and DC slightly
increase, whereas the success rates of agents utilizing SC drastically decrease
when FOV size increases.
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Fig. 13: Success Rates for Each Commitment Type

As seen from Figure 14, there is no evidence of remarkable differentiation
between medians (also deviations) of the normalized path difference in Setting-
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3 and Setting-4. When we apply the Mann-Whitney U statistical tests, there
is no statistically significant difference among SC, ZC, and DC (p > 0.05)
except in the case when the FOV is equal to 5 in Setting 3 (SC vs. ZC:
p = 0.046 < 0.05) and SC vs. DC: p = 0.024 < 0.05). This supports the
observation that agents utilizing ZC and DC can accomplish finding more
non-conflicting paths for the given scenarios while their solutions are as cost-
efficient as in the case of the SC.
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Fig. 14: Normalized Path Difference for Each Commitment Type

Moreover, we present a new metric to analyze how often agents interact
with each other to resolve observed conflicts throughout a scenario in our
negotiation-based decentralized MAPF system for each commitment type. The
average number of negotiations per time step is presented for each commitment
type and each FoV size in Figure 15. This metric provides granular information
about the interaction level of agents in a decentralized system. Agents engaged
in a comparably higher number of negotiations in the system’s initial state
(i.e., t=0), and the number of negotiations significantly decreased at t=1 in
all FoV configurations. Note that the average number of negotiations naturally
decreases as the number of agents who arrive own destination increases.
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Fig. 15: Average Number of Negotiations per Time Step in Setting-4
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Secondly, another distinctive effect of the commitment types comes from
the system behavior differences concerning FoV size. Agents have a chance to
resolve more number conflicts beforehand within a time step with larger FoV
sizes. Hence, agents engage less frequently with FoV9, continuously decreasing
the number of negotiations. On the other hand, the average number of nego-
tiations between t= 1–4 increases in the FoV5 setting and remains stable in
the FoV7 setting. This characteristic curve change from FoV size 5 to 9 re-
veals how information sharing among self-interested pathfinder agents affects
the conflict resolution behavior of a decentralized system. Agents with nar-
row FoV observe less number of conflicts beforehand but have to repeatedly
interact with near agents to resolve conflicts at earlier stages. On the other
hand, agents with larger FoV can resolve more conflicts at once and mono-
tonically fewer interactions with each other later. It indicates that the system
converges to a solution faster with larger FoVs, and the solution rate slightly
rises without compensation of solution quality as seen in Figure 13 and 14.

We also consider the privacy of self-interested agents as a third dimension
for evaluating a decentralized MAPF system performance alongside success
rate and solution quality metrics. Information sharing among the agents is
significantly higher when they employ ZC and DC commitment types than
SC, as seen in Figure 16. Another observation is that the increase in the
information sharing rate is higher for ZC and DC when the FoV size of agents
increases since the agents with SC engage in less number of negotiations (see
Figure 15), so they share less unique information about their planned paths
with others.
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Fig. 16: Average Information Sharing Rates for Each Commitment Type

On the other hand, Heatmap agents with ZC and DC share more informa-
tion to resolve conflicts, thus achieving much higher success rates (see Figure
13). The success rate and the solution quality are evaluated proportionally
with the information sharing rate, which is presented in Figure 17 and 18,
respectively. The system performance trades in favor of privacy by a clear
margin when agents have a narrow FoV. Note that trade-offs between privacy
and solution performance in terms of success rate and quality are linearly
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taken. Compared to the FoV5 configuration, the success rate over the average
information sharing rate substantially decreases in Setting 3 and 4 with FoV7
and FoV9 configurations. Similarly, the decrease in the solution quality over
the average information sharing rate is significant when agents have FoV7 and
FoV9 in both problem settings.

5 7 9

4

6

5 7 9

ZC DC SC

FoV FoV

Setting-3 Setting-4

Fig. 17: The Ratio of Success Rate to Average Information Sharing Rate for
Each Commitment Type (Higher is better.)

5 7 9

10

20

5 7 9

ZC DC SC

FoV FoV

Setting-3 Setting-4

Fig. 18: The Ratio of ‘1 - Normalized Path Difference’ to Average Information
Sharing Rate for Each Commitment Type (Higher is better)

6 Conclusion

This paper addresses how self-interested agents can coordinate in a grid envi-
ronment to reach their destination without collision and propose a negotiation
approach to resolve conflicts between their paths. Accordingly, we propose a
negotiation protocol and two compatible negotiation strategies: Path-Aware
and Heatmap. While the Path-Aware agent is more concerned about the length
of its absolute path, Heatmap agent considers future conflict among agents.
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Heatmap agent exploits the broadcasted path information by other agents ac-
cordingly. The proposed approach is evaluated elaborately in different settings
where agents are allowed/disallowed to take a wait action and/or disappear
when they reach their final destinations. In addition, we introduce three types
of commitments and study their effect on the success rate and solution qual-
ity. Furthermore, we present a new metric called information sharing rates to
discuss the trade-off between privacy and solution performances for MAPF
problems.

According to the experimental result, Heatmap agent outperforms Path-
Aware agent concerning the success rate and information sharing rate in all
settings. Moreover, Heatmap agent achieves higher success rates than the op-
timal algorithm for MAPF, EECBS, when agents can take wait action and
disappear at their targets (Setting 3 and 4). On the other hand, EECBS, with
0.1 suboptimality, outperformed the proposed approaches regarding both so-
lution and optimality rates. Nevertheless, we emphasize that our approach
concerns the agents’ privacy; therefore, there is a trade-off between privacy
and performance. When agents utilize zero or dynamic commitment types,
they perform better regarding success rates than when adopting a standard
commitment. Furthermore, we observed that the average number of negotia-
tions in each time step and information sharing rates are higher when FoV
increases.

In future work, we are planning to extend our approach by adopting mul-
tilateral negotiation instead of multiple consecutive bilateral negotiations and
to compare its performance with the proposed method. Moreover, it is nec-
essary to design more sophisticated agents capable of thinking ahead in their
negotiation and path-planning processes to improve the solution quality and
rate. Additionally, when a negotiation fails, our framework stops the run for
the entire scenario. However, some of the agents can still continue negotiating
with each other to reach their destination, while some agents fail. It would be
interesting to examine how many agents can reach their destinations in such
settings. Without a doubt, the trade-off between privacy and performance
should be further investigated elaborately.
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14. Ho, F., Geraldes, R., Gonçalves, A., Rigault, B., Sportich, B., Kubo, D.,
Cavazza, M., Prendinger, H.: Decentralized multi-agent path finding for
uav traffic management. IEEE Transactions on Intelligent Transportation
Systems 23(2), 997–1008 (2022). DOI 10.1109/TITS.2020.3019397



30 Keskin et al.

15. Inotsume, H., Aggarwal, A., Higa, R., Nakadai, S.: Path negotiation for
self-interested multirobot vehicles in shared space. In: Proceedings of the
International Conference on Intelligent Robots and Systems, pp. 11587–
11594. IEEE, Las Vegas, NV, USA (2020)

16. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Protocols for negotiating
complex contracts. IEEE Intelligent Systems 18, 32–38 (2003). DOI
10.1109/MIS.2003.1249167

17. Li, J., Ruml, W., Koenig, S.: Eecbs: A bounded-suboptimal search for
multi-agent path finding. In: AAAI (2021)

18. Li, Q., Gama, F., Ribeiro, A., Prorok, A.: Graph neural networks for
decentralized multi-robot path planning. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE (2020). DOI
10.1109/iros45743.2020.9341668
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